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L00-S01Partial Differential Equations (PDEs)

PDEs are, unsurprisingly, equations involving partial derivatives.

Typically the function being differentiated is unknown, and the goal is to
solve (compute an explicit expression for) the function.

Types of equations:
Algebraic equations: Solve for x:

x2 ´ 4 “ 0

(Ordinary) differential equations: Solve for ypxq:

dy

dx
“ 3y

Partial differential equations: Solve for upx, tq:

Bu

Bt
“
Bu

Bx
.
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L00-S02Partial Differential Equations (PDEs)

PDEs are, essentially, mathematical models.

Astronomical/cosmological
models
Biophysical models
Chemical flows and reactions
Data analysis and clustering
Fluid dynamics

Imaging
Neurological models
Optimization and design
Population dynamics, swarm
behavior
Structural mechanics/dynamics
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L00-S03PDE applications
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Figure 8. Left: WP distance from a circle (the identity weld) to a triangle with smoothness parameter ↵.
Right: triangular shapes corresponding to values of the ↵ parameter.

Shape evolution colored by velocity Di↵eomorphism evolution

Figure 9. Left: shape evolution for mpeg-7 shape 1333, a rotated tree. Right: Evolution of the fingerprint
along the path. The path length on T (1) is 10.25.

Shape evolution colored by velocity Di↵eomorphism evolution

Figure 10. Left: shape evolution for mpeg-7 shape 785, a fish. Right: Evolution of the fingerprint along
the path. The path length on T (1) is 8.889.
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sample size. The four key parameters in a power analysis framework are the probability of a false
positive (“alpha”), the sample size, the sample effect, and the statistical power. Typically, three of
these are specified as inputs and the fourth must be determined as output. Practitioners employ
certain types of power analyses to ascertain the cost and trustworthiness of a potentially laborious
and expensive subject experiment.23 Such analyses are enabled by computational packages that
compute statistical power and/or required sample size given summary statistics and/or metrics
about the population and/or data. Power analysis using existing software packages makes simpli-
fying (frequently Gaussian) assumptions regarding population and/or data variability, resulting in a
potentially grossly inaccurate power computation if the population distribution is misspecified.

2.5 Existing software infrastructure

This project focuses on the uncertainty modeling, optimization, and statistical design portions of
neuromodulation and neuroimaging modeling pipelines. For these foci, we will leverage determin-
istic forward models and tools for uncertainty modeling that the investigators have developed in
the past.

FEM simulations: The applications that will be used to develop our framework require FEM
head models and forward simulations. Our team has developed pipelines for each of these applica-
tions in prior work. To construct subject-specific head models, we use a combination of SimNIBS,
SPM, freesurfer, TetGen and iso2mesh, of which co-PI Dr. Fang is the developer. We have mul-
tiple detailed head models available from prior work. Some of these models will be distributed
along with our UBED tool, so that scientists who do not have access to such models can still use
our tools. Simulations of brain stimulation are performed using SCIRun30 and its BrainStimulator
toolkit, which are developed by the Utah team. SCIRun is a highly efficient FEM-based package
developed for bioelectricity simulations, which has been used widely for decades.

DBS algorithms: The best VTA models involve pipelines that combine FEM electric field
modeling, using methods described above, with axonal simulations, typically in NEURON.97 Co-PI
Dorval has experience with most of these algorithms, which yield a closed surface that partitions
the VTA from non-activated tissue, and recently published a comparison of their relative efficacy.98

Figure 6: Example of Uncertain-
SCI results: tCS-induced elec-
tric field strength on brain sur-
face, with standard deviations
(cylinders) due to uncertainty in
skull and CSF conductivities.

fNIRS: The design of complex fNIRS imaging modules (without
accounting for uncertainty) can be accomplished using the open-
source MATLAB toolbox MOCA (Modular Optode Configuration
Analyzer27–29), which is developed by Co-PI Fang’s lab. With an
input of potential module shapes, optode layout, and ROI cover-
age, MOCA can analyze, compare and improve existing modular
probes and create brain-region-specific or full-head fNIRS head-
gears using optical modules. Many of the quantitative probe met-
rics computed by MOCA, such as brain sensitivity, are currently
computed using a Monte Carlo (MC) based photon transport sim-
ulator, MCX (Monte Carlo eXtreme,99 http://mcx.space), which is
also developed by Co-PI Fang. A procedure that accounts for the
uncertainty due to the use of MC methods is highly desired in real-
world fNIRS applications, but is currently unavailable.

Uncertainty quantification: There are few existing simulation
tools that support UQ for biomedical applications in a general and efficient way. The SimNIBS
modeling package contains a tool to calculate uncertainty due to tissue conductivity assumptions

D–8

6.2. Fitzhugh-Nagumo waves on Dupin’s cyclide

(a) (b)

Figure 4: Solution of the Fitzhugh-Nagumo equations on Dupin’s cyclide at time T = 800 (left) and eigenvalues of the Laplacian
(right).

Following [24], we simulate the Fitzhugh-Nagumo reaction-di↵usion system on Dupin’s cyclide. The reaction-
di↵usion model is given by:

@c1

@t
= �1�Mc1 +

1

0.02
c1 (1� c1)

✓
c1 �

c2 + 0.02

0.75

◆
, (30)

@c2

@t
= �1�Mc2 + c1 � c2, (31)

where c1 and c2 are typically viewed as chemical concentrations or densities corresponding to a membrane
potential and a current, respectively. The above system is a simple model for the dynamics of excitable media,
and is often viewed as a simplification of the Hodgkin-Huxley model for the dynamics of neurons [13, 26].
Our initial condition on Dupin’s cyclide is given by c1 = 1

2 (1 + tanh(5x + y)) and c2 = 1
2 (1� tanh(10z)),

where x = (x, y, z). The node sets on the cyclide are the same as those used in [24]; we use N = 11884 of
these nodes. The results of the simulation with the SBDF2 method at time t = 100 are shown in Figure
4(a), and the spectrum of the discrete Laplacian is shown in Figure 4(b). As expected, the simulation results
in spiral waves that scroll over the manifold.

6.3. Turing spots on the double torus

Our final application involves solving another coupled reaction-di↵usion system on the double torus

T2 = {x = (x, y, z) 2 R3 | (x2(1� x2)� y2)2 + 0.5z2 =
1

40
}, (32)

which a genus-2 surface obtained as the join of two genus-1 tori. On this surface, we simulate the Turing
system given by

@c1

@t
= �1�Mc1 + ↵c1

�
1� ⌧1c

2
2

�
+ c2 (1� ⌧2c1) , (33)

@c2

@t
= �2�Mc2 + �c2

✓
1 +

↵⌧1
�

c1c2

◆
+ c1 (�1 + ⌧2c2) , (34)

where we use the parameters �1 = 0.0011, �2 = 0.0021, ⌧1 = 0.02, ⌧2 = 0.2, ↵ = 0.899, � = �0.91, and
�1 = �↵. We use a time-step of �t = 0.01 and simulate to a final time of t = 800 on N = 12100 nodes.
The results are shown in Figure 5a, and the spectrum of the discrete Laplacian L is shown in Figure 5b.
Figure 5a shows that spot patterns have formed on the double torus despite the relatively coarse spatial
discretization.
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Figure 4. The domain of the acoustic horn problem (left), along with a sample of the real part of the
solution obtained by the high-fidelity model (right).
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Figure 5. Error convergence with respect to the number of high-fidelity simulations of the two-dimensional
acoustic horn problem (5.9). Solid lines are mean L2 errors and dashed lines are L∞ errors.

decay almost exponentially fast. However, in bifidelity 2, model 2, serving as the low-fidelity
model, needs to be simulated 5,000 times on the dense point set Γ. On the other hand, in
trifidelity simulations, model 2 serves as the medium-fidelity model and needs to be simulated
less than 40 times on the selected point set γ. The computational saving of the trifidelity
algorithm is thus quite noticeable in this case.

6. Summary. In this paper, we explored computational aspects of the multifidelity ap-
proach proposed in [16]. We demonstrated that the method exhibits fast convergence and
computational efficiency for several nontrivial PDE examples, as long as the low-fidelity modelD
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L00-S04Scope of this class

This class is a first look into PDEs.

Specifically, we consider the following linear PDEs:
The heat equation: ut “ uxx

Laplace’s equation: uxx ` uyy “ 0

The wave equation: utt “ uxx

We are interested in (a) solving these PDEs, (b) understanding what kind of
behavior these PDEs model.

There are many more PDEs that we don’t cover in this class.
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L00-S05Prerequisites

We assume some background:
Fluency in calculus (derivatives+integrals of common functions,
u-substitution, integration by parts, ...)
Familiarity with ordinary differential equations (simple harmonic
oscillators)

This class will be difficult without knowledge of the above.
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