Department of Mathematics, University of Utah
 PDEs for Engineering Students MTH3150 - Section 002 - Spring 2021

 Final exam formula sheet

 Final exam formula sheet}

Note: The final exam is cumulative!
The following are some standard thermal properties of materials. Units follow in [brackets].

- $u(x, t)$ - Temperature as a function of space and time [temperature]
- $e(x, t)$ - Thermal energy density [energy/volume]
- $\phi(x, t)$ - Thermal heat flux [energy/(time \times area)]
- $\rho(x)$ - Mass density [mass/volume]
- $c(x)$ - Specific heat [energy/(mass \times temperature)]
- K_{0} - Thermal conductivity [energy/(time \times temperature \times length)]

You may find the following integrals helpful. In all the following, n and m are non-negative integers, and L is any positive number.

$$
\begin{aligned}
& \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) \mathrm{d} x= \begin{cases}0, & n \neq m \\
L / 2, & n=m\end{cases} \\
& \int_{0}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) \mathrm{d} x=\left\{\begin{array}{lr}
0, & n \neq m \\
L / 2, & n=m \neq 0 \\
L, & n=m=0
\end{array}\right. \\
& \int_{0}^{L} \cos \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) \mathrm{d} x=0 \quad(n>0) \\
& \int_{0}^{L} \sin \left(\frac{(2 n+1) \pi x}{2 L}\right) \sin \left(\frac{(2 m+1) \pi x}{2 L}\right) \mathrm{d} x= \begin{cases}0, & n \neq m \\
L / 2, & n=m\end{cases} \\
& \int_{0}^{L} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right) \cos \left(\frac{(2 m+1) \pi x}{2 L}\right) \mathrm{d} x= \begin{cases}0, & n \neq m \\
L / 2, & n=m\end{cases}
\end{aligned}
$$

A Fourier Series on the interval $[-L, L]$ takes the form

$$
\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

The coefficients of the Fourier Series associated to a function $f(x)$ are

$$
\begin{aligned}
a_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) \mathrm{d} x & \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x, & n \geq 1 \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x, & n \geq 1
\end{aligned}
$$

A Fourier Cosine series on the interval $[0, L]$ takes the form

$$
\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

The coefficients of the Fourier Cosine Series associated to a function $f(x)$ are

$$
\begin{aligned}
& A_{0}=\frac{1}{L} \int_{0}^{L} f(x) \mathrm{d} x \\
& A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x,
\end{aligned}
$$

A Fourier Sine series on the interval $[0, L]$ takes the form

$$
\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right),
$$

The coefficients of the Fourier Sine Series associated to a function $f(x)$ are

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x, \quad n \geq 1
$$

Let $f(x)$ and $F(\omega)$ be functions defined over the real number line. If f and F are Fourier transform pairs, then

$$
\begin{aligned}
F(\omega)=\mathcal{F}[f] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} \mathrm{~d} x \\
f(x)=\mathcal{F}^{-1}[F] & =\int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} \mathrm{~d} \omega
\end{aligned}
$$

where x is the physical variable and ω is the frequency variable. If f and F are Fourier Transform pairs, and h and H are Fourier Transform pairs, then the following table describes the relationship between g and its Fourier Transform G :

$g(x)$	$G(\omega)$
$e^{-a x^{2}}$	$\frac{1}{\sqrt{4 \pi a}} e^{-\omega^{2} / 4 a}$
$\sqrt{\frac{\pi}{a}} e^{-x^{2} / 4 a}$	$e^{-a \omega^{2}}$
$\delta(x)$	$\frac{1}{2 \pi}$
$f(x-a)$	$e^{i a \omega} F(\omega)$
$e^{-i a x} f(x)$	$F(\omega-a)$
$\frac{\mathrm{d} f}{\mathrm{~d} x}$	$-i \omega F(\omega)$
$i x f(x)$	$\frac{\mathrm{d} F}{\mathrm{~d} \omega}$
$(f * h)(x)$	$F(\omega) H(\omega)$
$\frac{1}{2 \pi} f(x) h(x)$	$(F * H)(\omega)$

Above, the convolution $*$ between two functions f and h is defined as

$$
(f * h)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(s) h(x-s) \mathrm{d} s .
$$

