Department of Mathematics, University of Utah
 Topics in Numerical Solutions of PDE
 MTH6630 - Section 001 - Spring 2019

Project 2

Finite volume schemes: high-order, systems, and multidimensional problems
Due Wednesday, April 24, 2019

1. Consider the scalar wave equation:

$$
u_{t}+u_{x}=0, \quad-1<x \leq 1, t>0,
$$

with periodic boundary conditions $u(-1, t)=u(1, t)$. Write both an ENO and WENO finite volume solver using a Lax-Friedrichs flux. Use a third-order ENO solver and a fifth-order WENO solver $(m=3)$. Your experiments should use two different initial data:

$$
\begin{aligned}
& u(x, 0)=u_{1}(x)=\exp (\sin \pi x), \\
& u(x, 0)=u_{2}(x)=\left\{\begin{aligned}
\frac{1}{6}[4 \phi(x)+\phi(x-\delta)+\phi(x+\delta)], & -\frac{4}{5} \leq x \leq-\frac{3}{5}, \\
1, & -\frac{2}{5} \leq x \leq-\frac{1}{5}, \\
1-|10(x-0.1)|, & 0 \leq x \leq \frac{1}{5}, \\
\frac{1}{6}[4 \tau(x)+\tau(x-\delta)+\tau(x+\delta)], & \frac{2}{5} \leq x \leq \frac{3}{5}, \\
0, & \text { else }
\end{aligned}\right.
\end{aligned}
$$

Here, $\delta=5 \times 10^{-3}$, and

$$
\phi(x)=\exp \left(-\frac{\log 2}{36 \delta^{2}}(x+0.7)^{2}\right), \quad \tau(x)=\sqrt{\max \left(1-100(x-0.5)^{2}, 0\right)}
$$

The function u_{2} should look like Figure 1.5 in the text.
Using $u_{1}(x)$ as the initial data, what spatial order of convergence do you observe? (For example, in the L^{1} norm.) For the u_{2} example, compare results from the W/ENO simulations against those from a first-order finite volume scheme using a Lax-Friedrichs flux.
2. This problem asks you to write solvers for the one-dimensional Euler equations of gas dynamics. These equations, in conservation form, are written as

$$
\frac{\partial \boldsymbol{u}}{\partial t}+\frac{\partial \boldsymbol{f}(\boldsymbol{u})}{\partial x}=0, \quad t>0
$$

where the conserved variable $\boldsymbol{u}(x, t) \in \mathbb{R}^{3}$ and flux \boldsymbol{f} are functions of the physical gas density $\rho(x, t)$, velocity $u(x, t)$, pressure $p(x, t)$, and energy $E(x, t)$,

$$
\boldsymbol{u}=\left[\begin{array}{c}
\rho \\
\rho u \\
E
\end{array}\right], \quad \boldsymbol{f}=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
(E+p) u
\end{array}\right],
$$

where pressure and energy are related by

$$
p=(\gamma-1)\left(E-\frac{1}{2} \rho u^{2}\right),
$$

where $\gamma=7 / 5$ is a physical constant. The flux Jacobian for this problem is given by

$$
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{3-\gamma}{2} u^{2} & (3-\gamma) u & \gamma-1 \\
-\frac{\gamma E u}{\rho}+(\gamma-1) u^{3} & \frac{\gamma E}{\rho}-\frac{3(\gamma-1) u^{2}}{2} & \gamma u
\end{array}\right]
$$

This Jacobian can be diagonalized as follows:

$$
\begin{aligned}
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}} & =\boldsymbol{S}(\boldsymbol{u}) \boldsymbol{\Lambda}(\boldsymbol{u}) \boldsymbol{S}(\boldsymbol{u})^{-1}, \\
\boldsymbol{\Lambda} & =\left[\begin{array}{ccc}
u+c & 0 & 0 \\
0 & u & 0 \\
0 & 0 & u-c
\end{array}\right] .
\end{aligned}
$$

We have introduced the local sound speed c, defined as

$$
c:=\sqrt{\frac{\gamma p}{\rho}}
$$

The flux Jacobian and its diagaonlization are also given on pages 52-53 of the textbook.
Implement a finite volume solver for this problem using a Harten-Lax-van Leer (HLL) flux. This flux, given left- and right-hand states \boldsymbol{u}_{l} and \boldsymbol{u}_{r}, respectively, is evaluated as

$$
\boldsymbol{F}\left(\boldsymbol{u}_{l}, \boldsymbol{u}_{r}\right)=\left\{\begin{aligned}
\boldsymbol{f}\left(\boldsymbol{u}_{l}\right), & s_{-} \geq 0 \\
\frac{s_{+} \boldsymbol{f}\left(\boldsymbol{u}_{l}\right)-s_{-} \boldsymbol{f}\left(\boldsymbol{u}_{r}\right)+s_{+} s_{-}\left(\boldsymbol{u}_{r}-\boldsymbol{u}_{l}\right)}{s_{+}-s_{-}}, & s_{-} \leq 0 \leq s_{+} \\
\boldsymbol{f}\left(\boldsymbol{u}_{r}\right), & s_{+} \leq 0
\end{aligned}\right.
$$

Here, $s_{ \pm}$, are the extreme wavespeeds of flux jacobians:

$$
s_{-}:=\min _{i}\left(\lambda_{i}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\left(\boldsymbol{u}_{l}\right)\right), \lambda_{i}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\left(\boldsymbol{u}_{r}\right)\right)\right), \quad s_{+}:=\max _{i}\left(\lambda_{i}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\left(\boldsymbol{u}_{l}\right)\right), \lambda_{i}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{u}}\left(\boldsymbol{u}_{r}\right)\right)\right),
$$

where $\lambda_{i}(\boldsymbol{A})$ denotes the i th eigenvalue of \boldsymbol{A}.
Test your solver with two popular initial conditions:
a. Sod's shock tube - For $x \in[0,1]$,

$$
\rho(x, 0)=\left\{\begin{array}{ll}
1, & x<\frac{1}{2} \\
\frac{1}{8}, & x \geq \frac{1}{2}
\end{array} \quad \rho u(x, 0)=0, \quad E(x, 0)=\frac{1}{\gamma-1}\left\{\begin{array}{cl}
1, & x<\frac{1}{2} \\
\frac{1}{10}, & x \geq \frac{1}{2}
\end{array}\right.\right.
$$

Use non-periodic boundary conditions that match the $x=0$ and $x=1$ values of the initial data, and solve up to terminal time $T=0.2$. Plot the density ρ, the velocity u, and the pressure p.
b. Shock entropy wave - For $x \in[-5,5]$,

$$
\begin{aligned}
& \rho=\left\{\begin{aligned}
3.857143, & x<-4, \\
1+0.2 \sin (\pi x), & x \geq-4
\end{aligned}\right. \\
& u=\left\{\begin{aligned}
2.629369, & x<-4, \\
0, & x \geq-4
\end{aligned}\right. \\
& p=\left\{\begin{aligned}
10.33333, & x<-4, \\
1, & x \geq-4
\end{aligned}\right.
\end{aligned}
$$

Again use non-periodic boundary conditions that match the $x= \pm 5$ values of the initial data. Simulate up to time $T=1.8$ and again plot the density, velocity, and pressure.
3. In this problem we will solve the scalar two-dimensional Kurganov-Petrova-Popov (KPP) problem:

$$
\begin{aligned}
\frac{\partial u}{\partial t} & +\nabla \cdot \boldsymbol{f}(u)=0, & t>0, x \in[-2,2], y \in\left[-\frac{5}{2}, \frac{3}{2}\right] \\
\nabla & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right), & \boldsymbol{f}(u)=(\sin u, \cos u)^{T},
\end{aligned}
$$

with initial data

$$
u(x, y, 0)=\left\{\begin{array}{cl}
\frac{14 \pi}{4}, & x^{2}+y^{2}<1 \\
\frac{\pi}{4}, & \text { else }
\end{array}\right.
$$

Use a finite volume scheme using a two-dimensional Cartesian mesh to solve this problem up to time $T=1$. Note that the finite volume formulation of this scheme on a Cartesian mesh reduces to a scheme with "essentially" one-dimensional operations. Use a first-order Lax-Friedrichs flux, and a 3rd/5th order Lax-Friedrichs W/ENO flux from the first problem to compute numerical solutions to this problem.

