Department of Mathematics, University of Utah
 Analysis of Numerical Methods I MTH6610 - Section 001 - Fall 2019

Lecture notes - Numerical differentiation
 Friday, November 22, 2019

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

We seek to develop approximate formulas for computing derivatives of functions. Our approximations will take a form similar to quadrature formulas:

$$
\begin{equation*}
f^{\prime}(x) \approx \sum_{j=1}^{N} w_{j} f\left(x_{j}\right), \quad x, x_{1}, \ldots, x_{N} \in[a, b] \tag{1}
\end{equation*}
$$

Formulas of the above type are called finite difference formulas. (We will see that some weights are negative so that the above is a subtraction, or difference, of evaluations.) In order to introduce the basic idea, we simplify the above task to a special case: suppose we wish to approximate $f^{\prime}(x)$ using the points $x_{1}=x$ and $x_{2}=x+h$. Thus we are looking for a formula of the form

$$
f^{\prime}(x) \approx w_{1} f(x)+w_{2} f(x+h)
$$

where the weights w_{1} and w_{2} must be computed. In order to accomplish this, we require Taylor's Theorem. Recall the following formula, which is Taylor's Theorem in Lagrange form: If f has $(p+1)$ continuous derivatives on $[a, b]$, then

$$
f(y)=\sum_{j=0}^{p} \frac{f^{(j)}(x)}{j!}(y-x)^{j}+\frac{f^{(p+1)}(\xi)}{(p+1)!}(\xi-x)^{p+1}, \quad \xi=\xi(y) \in[x, y]
$$

where we have the convention $f^{(0)}=f$ and $0!=1$. Applying this formula with $p=1$ to $y=x+h$, we have

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\xi)=f(x)+h f^{\prime}(x)+\mathcal{O}\left(h^{2}\right),
$$

where the statement $\mathcal{O}\left(h^{2}\right)$ assumes that $f^{\prime \prime}$ is bounded. If we linearly combine this expression with $f(x)$, then we obtain

$$
f(x+h)-f(x)=h f^{\prime}(x)+\mathcal{O}\left(h^{2}\right) \quad \Longrightarrow \quad-\frac{1}{h} f(x)+\frac{1}{h} f(x+h)=f^{\prime}(x)+\mathcal{O}(h)
$$

showing that $w_{1}=-1 / h$ and $w_{2}=1 / h$ achieves our desired goal, with the error decaying like h as $h \rightarrow 0$. Thus this is a first order approximation to the derivative.
We can now generalize this to the case (1): since

$$
f\left(x_{j}\right)=\sum_{k=0}^{N-1} \frac{f^{(k)}(x)}{k!}\left(x_{j}-x\right)^{k}+\mathcal{O}\left((b-a)^{N}\right),
$$

then by matching $f(x), f^{\prime}(x), \ldots, f^{(N-1}(x)$ terms, we want the w_{j} to satisfy the linear system

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
\left(x_{1}-x\right) & \left(x_{2}-x\right) & \left(x_{3}-x\right) & \cdots & \left(x_{N}-x\right) \\
\frac{\left(x_{1}-x\right)^{2}}{2} & \frac{\left(x_{2}-x\right)^{2}}{2} & \frac{\left(x_{3}-x\right)^{2}}{2} & \cdots & \frac{\left(x_{N}-x\right)^{2}}{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\left(x_{1}-x\right)^{N-1}}{(N-1)!} & \frac{\left(x_{2}-x\right)^{N-1}}{(N-1)!} & \frac{\left(x_{3}-x\right)^{N-1}}{(N-1)!} & \cdots & \frac{\left(x_{N}-x\right)^{N-1}}{\left(N_{1}\right)!}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The solution vector $\boldsymbol{w} \in \mathbb{R}^{N}$ to this system contains the weights w_{j} for the formula (1). Note in general that once we find weights such that (1) holds, the error will behave like

$$
f^{\prime}(x)=\sum_{j=1}^{N} w_{j} f\left(x_{j}\right)+\mathcal{O}\left((b-a)^{N-1}\right),
$$

where we will have order $N-1$ instead of N for the same reason as in our derivation of the $N=2$ case. Since we usually assume that the interval $[a, b]$ is small, then this results in order $N-1$ convergence as $(b-a) \rightarrow 0$.
However, sometimes one obtains a higher-order estimate than expected. Consider $N=2$ with

$$
x_{1}=x-h, \quad x_{2}=x+h,
$$

and we wish to compute a numerical differentiation formula for $f^{\prime}(x)$. The same computations as above yields

$$
w_{1}=-\frac{1}{2 h}, \quad \quad w_{2}=\frac{1}{2 h}
$$

We expect an order of convergence of $(N-1)=1$. Yet when we use Taylor's Theorem, we see that

$$
f(x \pm h)=f(x) \pm h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\mathcal{O}\left(h^{3}\right)
$$

so that

$$
-\frac{1}{2 h} f(x-h)+\frac{1}{2 h} f(x+h)=0 f^{\prime \prime}(x)+\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(h^{2}\right) .
$$

Thus, we obtain order- 2 convergence for this special configuration of nodes in the differentiation formula.

