DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Analysis of Numerical Methods I
MTH6610 — Section 001 — Fall 2019

Lecture notes — Quadrature
Wednesday November 20, 2019

These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Quadrature is the numerical approximation of definite integrals. The prototypical example
is a one-dimensional integral over a compact interval:

b
/f(:v)dx, —00 < a<b<oo.

Perhaps the most common type of quadrature uses N point evaluations of f to approximate
this integral:

b N
/ f(m)dx%ijf(:cj),
a j=1

where the x; are the quadrature abscissae or nodes and the w; are the quadrature weights,
both of which must be prescribed or determined.

A popular approach to constructing such quadrature rules is to use polynomial interpolation
to construct interpolatory quadrature rules. I.e., if one prescribes z1,...,xyx as distinct
points in [a, b], then the unique degree-(N — 1) polynomial that interpolates f(z) at these
points is given by

N

pn-1(z) =Y flz)t5(x),

j=1

where ¢; are the IV cardinal Lagrange interpolating polynomials associated with the points
x1,...,2N. An interpolatory quadrature rule constructs a quadrature rule via the approx-
imation

/abf(m) do ~ /apr—l(x) dz = jéf(xj)Lbéj(x) dz,

which shows that we can define the quadrature weights as

b
wj:/ li(x)da.

This provides a formulaic procedure for computing interpolatory quadrature rules once
r1,...,TN are prescribed.

There is a different, equivalent procedure for computing the weights w; of an interpolatory
quadrature rule for the given nodes x1,...,xy. We note that

fespan{l,x,m2,...,xN_1} = f(z) =pn-_1(x),

Lecture notes — Quadrature
MATHG6610 Analysis of Numerical Methods I University of Utah

so that an interpolatory quadrature rule with the weights w; satisfies

b N
/ p(x)da::Zp(xj)wj, pEspan{l,x,xz,...,xN_l}.
a j=1
Noting that the above constraint is linear in the unknowns wj, then let ¢,...,qx be any
basis for span {1, T, ..., fol}, so that the vector solution w € RY to the linear system
b
Vw = b, (Vg = aele). O = [au(o)ds,
a

contains the interpolatory quadrature rule weights w;. Solving the above linear system is
an equivalent way of computing weights w; for an interpolatory rule.

The error committed by an interpolatory quadrature rule can be understood by consider-
ing the error committed by the interpolation. The following is a standard error formula
committed by polynomial interpolation on an interval [a, b]:

N (N)
1) = pva(e) = [[e 2 D5 £=) € [a 1)

J=1

The number ¢ is usually not computable. However, noting that

N
[[@—=2)|<b-a),
j=1

then

ma (@)~ pv-a (@) < CZD a1
z€a,b] B N! z€[a,b] ’

so that the error committed by the interpolatory quadrature rule is

/abf(x) da — /:le(x) da

One frequently uses interpolatory quadrature rules in a composite (i.e,. piecewise) form,
so that the interval length (b — a) is usually small, (b —a) < 1. Under this assumption,
one then sees that this provides a convergent interpolatory estimate, so long as the Nth
derivative of f does not become too large. In particular, the error scales as (b — a)V*t! as
(b —a) — 0. We say that the order of the quadrature rule is N + 1.

A special family of interpolatory quadrature rules is given by the Newton-Cotes rules.
These are N-point (N > 2) rules using equidistant points on [a, b]. If the nodes include the
endpoints, these are called closed Newton-Cotes rules. If they do not include the endpoints,
they are open Newton-Cotes rules.

Finally, we recall that interpolation on equidistant nodes is usually a bad idea for high-
degree polynomial interpolation. Therefore, the Newton-Cotes rules are only viable when
N < 10.

< (b- @) max |£(@) — pyoa (@) < EZO s [/0)
- z€|a,b] B B N! z€[a,b])

