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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

We will be interested in polynomial approximation in one dimension. Approximating by
polynomials is often motivated by the following result, the Weierstrass Approximation The-
orem: let f : [a, b] → R be any continuous function on the compact interval [a, b]. Then
there exist a sequence of polynomials pk, each of degree k, such that

lim
k→∞

sup
x∈[a,b]

|f(x)− pk(x)| = 0.

This result is heartening, but it turns out that constructing polynomials having the above
approximation property can in fact be quite hard.
Perhaps the conceptually easiest way to construct an approximating polynomial is with
interpolation: let x1, . . . , xn be n points in R, and define Pk as the space of polynomials of
degree k or less,

Pk = span
{

1, x, . . . , xk
}
.

Suppose now we are given a continuous function f(x). The goal is to find an element of Pk

that interpolates f at the sites xj , j = 1, . . . , n. By a counting argument it seems plausible
that we can choose k = n − 1 and achieve a unique polynomial from Pn−1 satisfying the
interpolation conditions. There are two fairly straightforward ways to show this.
The first way uses linear algebra: We seek to find p ∈ Pn−1 satisfying p(xj) = f(xj) for
j = 1, . . . n. This means

p(x) =

n∑
q=1

cqx
q−1, p(xj) =

n∑
q=1

cqx
q−1
j = f(xj),

for j = 1, . . . , n. The conditions above are linear in the coefficients cq, so we collect the
coefficients into a vector c, which must satisfy the linear system

V c = f , (V )j,q = xq−1j , (f)j = f(xj). (1)

for 1 ≤ j, q ≤ n. Since V is a square matrix, then a unique solution exists if V is invertible.
V is called a Vandermonde matrix.
Indeed, V is invertible provided all the xj are distinct points on R. The standard way to
show this is to show that the Vandermonde matrix determinant is nonzero. We will prove
the following fact:

detV =
∏

1≤j<q≤n
(xq − xj). (2)
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We prove the above via induction. For n = 2, we have

detV = det

(
1 x1
1 x2

)
= x2 − x1 =

∏
1≤j<q≤2

(xq − xj),

showing the initialization step. Now let n ≥ 2. The inductive hypothesis assumes (2), and
we must show this for n + 1. In this step, we use Vm to denote the m ×m Vandermonde
matrix. The determinant in question has the form

detVn+1 = det


1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

. . .
...

1 xn+1 x2n+1 · · · xnn+1

 .

We use the Laplace expansion to expand this determinant along the last row:

detVn+1 = (−1)n+1

 n∏
j=0

xjn+1Mj(x1, . . . , xn)

 ,
where Mj are the cofactors (signed determinants of the minors) formed from eliminating
associated rows and columns from Vn+1. As notationally suggested, all the cofactors are
independent of xn+1. Therefore, as a function of xn+1, the determinant detVn+1 is a
polynomial of degree n. The roots of this polynomial are xj , j = 1, . . . , n, since if xn+1 =
xj , then two rows of the Vandermonde matrix coincide and so the determinant is zero.
Therefore, we have shown

detVn+1 = (−1)n+1K(x1, . . . , xn)
n∏

j=1

(xn+1 − xj).

The coefficient K(x1, . . . , xn) is the signed determinant of the upper-left block of Vn+1; this
upper-left block equals Vn. Therefore:

detVn+1 = (−1)n+1K(x1, . . . , xn)
n∏

j=1

(xn+1 − xj) = (−1)n+1(−1)n+1 detVn

n∏
j=1

(xn+1 − xj)

=

 ∏
1≤j<q≤n

(xq − xj)

 n∏
j=1

(xn+1 − xj) =
∏

1≤j<q≤n+1

(xq − xj),

which completes the proof. We have shown that the linear system in (1) always has a
unique solution if the xj are unique. Therefore, minimal-degree polynomial interpolation is
unisolvent on distinct nodes in one dimension.
A second, perhaps simpler way to show unisolvence of polynomial interpolation is to ex-
plictly construct a solution. Assume the xj are all distinct. Then by inspection one finds
that the n polynomials

`j(x) :=
∏

1≤k≤n
k 6=j

x− xk
xj − xk

, 1 ≤ j ≤ n,
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are all polynomials of degree n− 1 (i.e., elements of Pn−1) and satisfy the condition

`j(xk) = δj,k, 1 ≤ k ≤ n.

The polynomials `j are called the (cardinal) Lagrange interpolating polynomials. Due to
the above property, we have that

p(x) =

n∑
j=1

f(xj)`j(x),

is a degree-(n − 1) polynomial satisfying p(xk) = f(xk) for k = 1, . . . , n. It is likewise the
only such polynomial: if q is any other polynomial in Pn−1 interpolating f at the xk, then
p− q is a degree-(n− 1) polynomial with n roots at x1, . . . , xn. Therefore p− q = 0.
Of course, nowhere have we discussed how close an interpolating polynomial is to a polyno-
mial to Weierstrass-like approximation. To make this comparison, we require some notation.
Given a compact interval [a, b], a 6= b on the real line, define

C ([a, b];R) =
{
f : [a, b]→ R

∣∣ f is continuous everywhere on [a, b]
}
,

endowed with the norm

‖f‖∞ = sup
x∈[a,b]

|f(x)|.

This norm makes C a Banach space. Given x1, . . . , xn, all distinct nodes, we can define an
interpolation operator from the procedure above:

In : C → Pn−1, Inf(x) =
n∑

j=1

f(xj)`j(x).

To understand the norm of this operator, assume f satisfies ‖f‖∞ = 1, so that

|Inf(x)| =

∣∣∣∣∣∣
n∑

j=1

f(xj)`j(x)

∣∣∣∣∣∣ ≤
n∑

j=1

|f(xj)`j(x)| ≤
n∑

j=1

|`j(x)|

By choosing f such that f(xj) = sgn `j(x), and f(x) linearly interpolates in between points,
all the above inequalities can become equalities, so that

sup
‖f‖∞=1

|Inf(x)| =
n∑

j=1

`j(x) =: λ(x).

The function λ(x) is called the Lebesgue function (associated to the points x1, . . . , xn). The
norm of the interpolation operator is now easily computed:

‖In‖C 7→C = sup
‖f‖∞=1

‖Inf‖∞ = sup
x∈[a,b]

λ(x) =: Λ.

The number Λ is the called the Lebesgue constant.
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All of this is meant to aid in our understanding of interpolation error. For any continuous
function f , note that for any polynomial q in Pn−1, we have

|f(x)− Inf(x)| ≤ |f(x)− q(x)|+ |q(x)− Inf(x)|
= |f(x)− q(x)|+ |In (q(x)− f(x))|
≤ |f(x)− q(x)|+ λ(x)‖f − q‖∞
≤ [1 + λ(x)] ‖f − q‖∞
≤ [1 + λ(x)] ‖f − q‖∞,

where the second line uses the fact that In is a projection onto Pn−1 in C. Infimizing the
above result over all q ∈ Pn−1, we have proven

|f(x)− Inf(x)| ≤ [1 + λ(x)] inf
q∈Pn−1

‖f − q‖∞

‖f(x)− Inf(x)‖∞ ≤ [1 + Λ] inf
q∈Pn−1

‖f − q‖∞.

The second equality above is called Lebesgue’s Lemma, and shows that we can bound inter-
polation error relative to the best approximating polynomial. Lebesgue’s Lemma separates
error resulting from the choice of interpolation nodes (Λ) from error resulting from the given
function f .
Therefore, the Lebesgue constant gives us a means to understand errors introduced by
interpolation. For example, it is known that if xj are equispaced on [a, b], then Λ grows
exponentially with n, yielding a (very) poor approximation. However, consider the following
points distributed on [−1, 1]:

xj = cos θj , θj =
2j − 1

2n
π, j = 1, . . . , n.

These points are called Chebyshev points. If one affinely maps these points to [a, b], then
it is known that Λ grows only logarithmically with n. It also turns out that logarthmic
growth in n is the best (smallest) possible growth behavior for Λ.
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