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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lecture 32

Many problems in applied mathematics and engineering rely on computing the solution
x ∈ Rn to the linear system

Ax = b,

where b ∈ Rn and A ∈ Rn×n are given. With modern computing power, when n . 5000, this
can be accomplished with standard software packages and minimal human effort. These soft-
ware packages solve this system direct methods, that is with optimized versions of Gaussian
elimination (LU factorization), or perhaps with the Cholesky decomposition if A is known
to be symmetric and positive definite.
However, the cost of this direct approach can be infeasible for larger n. The cost of most
implemented direct solver scales like n3. (Some optimizations can bring the exponent down
to around 2.5, but this often requires special coding.) When n > 50, 000, direct methods
with cubic cost in n are not tractable. For example, simply storing a 50, 000×50, 000 dense
matrix in double-precision format requires 20 gigabytes of memory. Direct solvers often run
into computational bottlenecks for large n.
In contrast, iterative methods have been developed to compute solutions to linear systems
for very large values of n, even exceeding n = 106. The downside is that such methods
sometimes require significant knowledge about the structure or linear algebraic properties
of A, and almost all of them are only efficient when A is a sparse matrix, i.e., when most
of the entries of A are 0. A comprehensive guide to iterative methods for computing
solutions to linear systems would require many hundreds of pages – we settle here for a
brief, specialized, and largely deficient presentation of some of the more popular strategies
and ideas.
The following bullet points distill some of the philosophical ideas and differences between
direct and iterative methods:

• Iterative methods build a sequence of approximate solution x0, x1, . . . , and frequently
terminate when ‖Axk − b‖ is small enough.

• The update step xk 7→ xk+1 of an iterative method frequently uses only matrix-
vector multiplications. Iterative methods are most efficient when these multiplications
involve sparse matrices.

• The sequence of approximate solutions usually gradually converges to the solution x
(say in the Euclidean norm).

1

Akil




Lecture notes – Iterative methods for linear systems
MATH6610 Analysis of Numerical Methods I University of Utah

• One can also view direct methods as producing a sequence of vectors that converges
to the solution x after the method completes. However, this sequence has O(1) error
until the very final step when the error is 0 (in exact arithmetic).

We will discuss two general classes of iterative methods that are relatively popular.

Relaxation methods

Relaxation methods are iterative methods where the update step usually proceeds in a
fashion like

xk+1 = B−1Cxk + c

for a vector c, a matrix C, and an “easily” invertible matrix B. Frequently, B is diagonal.
Three popular relaxation approaches are

• Jacobi iteration

• Gauss-Seidel iteration

• Successive over-relaxation

For example, in the Jacobi method, the matrix B is the diagonal of A, and hence eas-
ily invertible. Relaxation methods are generally applied when the linear system Ax = b
is derived from a discretization of Laplace’s equation. (In fact, one frequently needs ma-
trix properties that are satisfied by discretizations of the Laplacian in order to prove that
relaxation methods converge.)
Relaxation methods are usually not used by themselves since they converge relatively slowly.
However, they are integral ingredients in one of the most popular and effective class of
iterative solver techniques known today: multigrid methods.

Krylov subspace methods

A Krylov subspace is the span of the vectors

b, Ab,A2b, . . . ,

Krylov iterative methods generate a solution xk such that

r = (Axk − b) ⊥ span
{
b, Ab, . . . , Ak−1b

}
Such methods are in principle similar to the ideas of power iteration for finding eigenvalues.
The most popular Krylov subspace methods are

• CG – the conjugate gradient method (for symmetric, positive definite systems)

• BiCG – the biconjugate gradient method

• GMRES – the method of generalized minimum residuals

Because the Krylov subspace will eventually span the entire space, after n iterations one is
usually guaranteed a zero residual (i.e., an exact solution).
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Preconditioning

It has been observed that the convergence of iterative methods can be significantly better
when A is well-conditioned. Preconditioning is a technique that replaces Ax = b by the
system

P−1Ax = P−1b,

or even

AP−1(Px) = b.

The goal of either such replacement is to generate a matrix P−1A or AP−1 that is more well-
conditioned than A. Using iterative methods on this new preconditioned system usually
converges more quickly. The matrix P−1 is called the preconditioner, and it is usually never
generated or computed explicitly.
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