
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MTH6610 – Section 001 – Fall 2019

Lecture notes – The QR algorithm
Wednesday, November 6, 2019

These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lectures 28

We have seen that Rayleigh iteration can be an effective way to compute eigenvalues. We
describe here an alternative, far more utilized, algorithm for computing eigenvalues: the QR
algorithm. Before getting to this algorithm, we take a detour to explain simultaneous power
iteration. As before, we assume here that A is a real-valued, square, symmetric matrix of
size n. Thus, we have

A = V ΛV T ,

where V is a unitary matrix whose columns are the eigenvalues of A, and Λ is a diagonal
matrix containing the eigenvalues.
Let λ1, . . . , λn, and v1, . . . , vn denote the eigenvalues and corresponding eigenvectors of
A. We assume that the eigenvalues are ordered in decreasing magnitude. Recall that the
method of power iteration uses the product Akv (for sufficient large k and a random vector
v) to compute an approximation to the domainant eigenvector of A. Now consider using
power iteration on two vectors v and w for large k, we have

v =
n∑
j=1

cjvj , w =
m∑
j=1

djvj ,

Akv = λk1

c1v1 + c2

(
λ2
λ1

)k
v2 +

n∑
j=3

cj

(
λj
λ1

)k
vj

 ≈ λk1c1v1,
Akw = λk1

d1v1 + d2

(
λ2
λ1

)k
v2 +

n∑
j=3

dj

(
λj
λ1

)k
vj

 ≈ λk1
[
d1v1 + d2

(
λ2
λ1

)k
v2

]

Since v1 is orthogonal to v2, then the QR factorization of the n× 2 concatentation of these
vectors is [

Akv Akw
]

= [v1 v2]

(
c1λ

k
1 d1λ

k
1

0 d2

(
λ2
λ1

)k ) =: QR

We have discovered that by performing power iteration on two linearly independent vectors,
we can obtain approximations to the two dominant eigenvectors of A. Repeating this

1



Lecture notes – The QR algorithm
MATH6610 Analysis of Numerical Methods I University of Utah

argument, one can conclude that if W ∈ Rn×n is any full-rank matrix, then performing a
QR decomposition of AkW yields

AkW = QR ≈ [v1 v2 · · · vn]R =: V R

I.e., the matrix Q contains (approximations to) the eigenvectors V of A. This is the method
of simultaneous power iteration to find collections of eigenvectors (as opposed to sequential
power iteration, using matrix deflation after each eigenvalue is found.)
With some experience in ill-conditioned algorithms, one can reason that AkW will be a
relatively ill-conditioned matrix, so that directly performing a QR decomposition of this
matrix is probably not a good idea. Instead, a slightly more intelligent version of this
performs a QR decomposition each time A is applied:

QPI0 = I,

k = 0, 1, . . .

APIk+1 := AQPIk

QPIk+1R
PI
k+1 := APIk+1

Above, we have chosen the initial matrix W to be the identity I. How do the matrices QPIk+1

and RPIk+1 compare to the QR decomposition of Ak? The following result holds:

QkRk := Ak

Qk = QPIk

Rk = RPIk RPIk−1 · · ·RPI1 .

(1)

Thus, this iterated QR method computes the same Q factor, and if we desired the R factor
from pure power iteration is also computable. Therefore, for large k we have

QPIk ≈ V (2)

We are now in a position to introduce the QR algorithm. Given a square matrix A, the
(basic) QR algorithm is the following sequence of operations:

AQR0 = A,

k = 0, 1, . . .

QQRk+1R
QR
k+1 := AQRk

AQRk+1 := RQRk+1Q
QR
k+1

Noting that

AQRk+1 =
(
QQRk+1

)T
QQRk+1R

QR
k+1Q

QR
k+1 =

(
QQRk+1

)T
AQRk QQRk+1,

we see that AQRk is related to A by a unitary similarity transform:

AQRk =
(
QQR1 · · ·QQRk

)T
A
(
QQR1 · · ·QQRk

)
(3)

This fact, that iterating this way is simply unitary similarity transformations, and hence
stable, is one reason why this algorithm is attractive.

2



Lecture notes – The QR algorithm
MATH6610 Analysis of Numerical Methods I University of Utah

The surprising fact about this algorithm is that it is essentially a stable way to perform
simultaneous power iteration. To see this, we investigate how Ak depends on the QR
matrices. For k = 1, we have

A1 = QQR1 RQR1 . (4)

We also note by virtue of the QR algorithm, we have the following relationship allowing us
to permute QQR and RQR matrices:

RQRj QQRj = QQRj+1R
QR
j+1. (5)

Now we make the following inductive hypothesis:

Ak =
(
QQR1 QQR2 · · ·QQRk

)(
RQRk RQRk−1 · · ·R

QR
1

)
. (6)

Then for arbitrary k ≥ 1:

Ak+1 = AAk
(4)
= QQR1 RQR1 Ak

(6)
= QQR1 RQR1

(
QQR1 QQR2 · · ·QQRk

)(
RQRk RQRk−1 · · ·R

QR
1

)
= QQR1

(
RQR1 QQR1

)
QQR2 · · ·QQRk RQRk RQRk−1 · · ·R

QR
1

(5),j=1
= QQR1

(
QQR2 RQR2

)
QQR2 · · ·QQRk RQRk RQRk−1 · · ·R

QR
1

= QQR1 QQR2

(
RQR2 QQR2

)
QQR3 · · ·QQRk RQRk RQRk−1 · · ·R

QR
1

(5),j=2
= QQR1 QQR2

(
QQR3 RQR3

)
QQR3 · · ·QQRk RQRk RQRk−1 · · ·R

QR
1

...

(5),j=k
=

(
QQR1 QQR2 · · ·QQRk+1

)(
RQRk+1R

QR
k · · ·RQR1

)
This completes the inductive step, proving (6). We have thus computed a QR decomposition
of Ak. Comparing this QR decomposition of Ak with that given by (1), we conclude:

QPIk = QQR1 · · ·QQRk (7)

RPIk RPIk−1 · · ·RPI1 = RQRk RQRk−1 · · ·R
PI
1 .

Thus, (7) implies that the product of QQR matrices can be used to compute QPIk , which by
(2) approximates the eigenvectors V .
This is an interesting result, but a more surprising result is true: Using (7) and (2) in (3),
we conclude:

AQRk ≈ V TAV = Λ.

Thus, the QR algorithm produces iterates AQRk that converge to Λ. Furthermore, these iter-
ates are computed from A by a sequence unitary (well-conditioned!) similarity transforms.
This is the power of the QR algorithm: a methodical procedure with unitary transforma-
tions that reveals the spectrum of A.

3



Lecture notes – The QR algorithm
MATH6610 Analysis of Numerical Methods I University of Utah

In fact, a stronger statement holds: if A lies in a more general class of matrices (which
includes those that are complex-valued, non-Hermitian, etc), then AQRk converges to the
Schur factor of A. Hence, the eigenvalues can be read off the diagonal, and the QR algorithm
essentially computes the Schur decomposition of A.
This is the power of the QR algorithm: it is a stable method for computing the Schur factor
(and hence the eigenvalues) of A. The form of this algorithm we have explained above
is too expensive to use directly (it requires a large number of QR factorizations). Just as
power iteration can be sped up using inverse iteration, so too can the basic QR algorithm be
sped up using shifts, which is an implicit way of performing inverse iteration and Rayleigh
quotient operations.

4


