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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lectures 23

Let A ∈ Cn×n. Such a square matrix is Hermitian positive definite if it is both Hermitian,
and if

x∗Ax > 0, x 6= 0. (1)

This is a very strong condition, and implies that the matrix is invertible, has real and
positive eigenvalues, and is unitarily diagonalizable. By selecting x = ej for j = 1, . . . , n,
we also see that the diagonal elements of A must be real and positive.
The process of LU factorizations simplifies considerably when we have a Hermitian positive-
definite matrix. Suppose we start with the Hermitian positive definite matrix

A =


a v∗

v A2

 , v ∈ Cn−1,

where the (n−1)×(n−1) matrix A2 must also be Hermitian positive definite. (In condition
(3), take x ∈ Cn as any vector whose first entry vanishes.) Since a > 0, then we can perform
Gaussian elimination, seeking to eliminate the vector v:

A =


1 0

v
a I


︸ ︷︷ ︸

L1


a v∗

0 A2 − vv∗

a


︸ ︷︷ ︸

B∗

(2a)

We have defined the matrix B∗, so that

B =


a 0

v A2 − vv∗

a


One could again consider performing one LU decomposition step to eliminate the vector v
in the first column of B:

B =


1 0

v
a I




a 0

0 A2 − vv∗

a

 (2b)

1
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By combining the relations (2), we have shown that

A =


1 0

v
a I




a 0

0 A2 − vv∗

a




1 v∗

a

0 I

 .

Finally, we factor out a
√
a from the (1,1) entry in the middle matrix, and notice that the

first and third matrices are Hermitian conjugates:

A =


√
a 0

v√
a

I




1 0

0 A2 − vv∗

a



√
a 0

v√
a

I


We can define the first matrix on the right-hand side as L1. Now note that the middle matrix
is again a Hermitian positive-definite matrix. (Positive-definite since A was positive-definite
and L1 is invertible.) Therefore, the (1,1) entry of the submatrix A2 − vv∗

a is also positive,
and we may repeat our symmetric LU procedure iteratively. The result is that we can
perform the decompsition

A = (L1L2 · · ·Ln−1) (L1L2 · · ·Ln−1)
∗ =: LL∗

I.e., we have shown that Hermitian positive-definite matrices have a symmetric LU factor-
ization. This is called the Cholesky factorization. In fact, we have existence and uniqueness:

Theorem 1. If A is a Hermitian positive-definite matrix, then it has a unique Cholesky
factorization A = LL∗.

If A is only positive semi -definite, i.e., if

x∗Ax ≥ 0, x 6= 0, (3)

then the Cholesky procedure may fail since the (1,1) entry may be zero. However, if one is
willing to allow zeros on the diagonal of L and allows pivoting, then such a factorization is
still possible:

Theorem 2. If A is a Hermite positive semi-definite matrix, then it has a pivoted Cholesky
factorization A = PLL∗P ∗, where P is a permutation matrix, and L may have zeros on its
diagonal. Such a factorization is in general not unique.
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