Department of Mathematics, University of Utah

Analysis of Numerical Methods I
MTH6610 - Section 001 - Fall 2017
Lecture notes - Cholesky Decompositions
Friday, October 18, 2019

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lectures 23
Let $A \in \mathbb{C}^{n \times n}$. Such a square matrix is Hermitian positive definite if it is both Hermitian, and if

$$
\begin{equation*}
x^{*} A x>0, \quad x \neq 0 \tag{1}
\end{equation*}
$$

This is a very strong condition, and implies that the matrix is invertible, has real and positive eigenvalues, and is unitarily diagonalizable. By selecting $x=e_{j}$ for $j=1, \ldots, n$, we also see that the diagonal elements of A must be real and positive.
The process of $L U$ factorizations simplifies considerably when we have a Hermitian positivedefinite matrix. Suppose we start with the Hermitian positive definite matrix

$$
A=\left(\begin{array}{cccc}
a & - & v^{*} & - \\
\mid & & \\
v & & A_{2} & \\
\mid & &
\end{array}\right), \quad v \in \mathbb{C}^{n-1}
$$

where the $(n-1) \times(n-1)$ matrix A_{2} must also be Hermitian positive definite. (In condition (3), take $x \in \mathbb{C}^{n}$ as any vector whose first entry vanishes.) Since $a>0$, then we can perform Gaussian elimination, seeking to eliminate the vector v :

We have defined the matrix B^{*}, so that

$$
B=\left(\begin{array}{cccc}
a & - & 0 & - \\
\mid & & \\
v & & A_{2}-\frac{v v^{*}}{a} & \\
\mid & &
\end{array}\right)
$$

One could again consider performing one $L U$ decomposition step to eliminate the vector v in the first column of B :

$$
B=\left(\begin{array}{cccc}
1 & - & 0 & - \tag{2b}\\
\mid & & \\
\frac{v}{a} & I & \\
\mid & & 0 & -
\end{array}\right)\left(\begin{array}{ccc}
a & - & 0 \\
\mid & & \\
0 & & A_{2}-\frac{v v^{*}}{a} \\
\mid & &
\end{array}\right)
$$

By combining the relations (2), we have shown that

$$
A=\left(\begin{array}{cccc}
1 & - & 0 & - \\
\mid & & \\
\frac{v}{a} & I & \\
\mid & & & 0 \\
\frac{1}{a} & - \\
\mid & & A_{2}-\frac{v v^{*}}{a} & \\
\mid & & &
\end{array}\right)\left(\begin{array}{cccc}
1 & - & \frac{v^{*}}{a} & - \\
\mid & & \\
0 & I & \\
\mid & & &
\end{array}\right)
$$

Finally, we factor out a \sqrt{a} from the $(1,1)$ entry in the middle matrix, and notice that the first and third matrices are Hermitian conjugates:

$$
A=\left(\begin{array}{cccc}
\sqrt{a} & - & 0 & - \\
\mid & & \\
\frac{v}{\sqrt{a}} & I & \\
\mid & & & 0 \\
\hline
\end{array}\right)\left(\begin{array}{cccc}
1 & - & - \\
\mid & & A_{2}-\frac{v v^{*}}{a} & \\
0 & & &
\end{array}\right)\left(\begin{array}{cccc}
\sqrt{a} & - & 0 & - \\
\frac{v}{\sqrt{a}} & & I & \\
\mid & &
\end{array}\right)
$$

We can define the first matrix on the right-hand side as L_{1}. Now note that the middle matrix is again a Hermitian positive-definite matrix. (Positive-definite since A was positive-definite and L_{1} is invertible.) Therefore, the $(1,1)$ entry of the submatrix $A_{2}-\frac{v v^{*}}{a}$ is also positive, and we may repeat our symmetric $L U$ procedure iteratively. The result is that we can perform the decompsition

$$
A=\left(L_{1} L_{2} \cdots L_{n-1}\right)\left(L_{1} L_{2} \cdots L_{n-1}\right)^{*}=: L L^{*}
$$

I.e., we have shown that Hermitian positive-definite matrices have a symmetric $L U$ factorization. This is called the Cholesky factorization. In fact, we have existence and uniqueness:

Theorem 1. If A is a Hermitian positive-definite matrix, then it has a unique Cholesky factorization $A=L L^{*}$.

If A is only positive semi-definite, i.e., if

$$
\begin{equation*}
x^{*} A x \geq 0, \quad x \neq 0, \tag{3}
\end{equation*}
$$

then the Cholesky procedure may fail since the $(1,1)$ entry may be zero. However, if one is willing to allow zeros on the diagonal of L and allows pivoting, then such a factorization is still possible:

Theorem 2. If A is a Hermite positive semi-definite matrix, then it has a pivoted Cholesky factorization $A=P L L^{*} P^{*}$, where P is a permutation matrix, and L may have zeros on its diagonal. Such a factorization is in general not unique.

