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These notes are not a substitute for class attendance. Their main purpose is to
provide a lecture overview summarizing the topics covered.

Reading: Trefethen & Bau III, Lecture 21

We have seen that given an invertible A ∈ Cn×n, then it may be possible to form the LU
factorization of A:

A = LU,

where L is lower triangular and U is upper triangular, and both are square and invertible.
It only “may” be possible since the procedure to form this factorization is Gaussian elimi-
nation, which can fail for computational reasons that are directly related to invertibility or
conditioning of A.

Operation count

The LU factorization of A requires n− 1 steps, and at step k, rows k+ 1, . . . , n have vector
operations (about n arithmetic operations) performed on them to achieve elimination. Thus,
the computational complexity of LU factorization is on the order of

n−1∑
k=1

(n− k)n ∼ O(n3),

revealing the large-n complexity of performing LU factorizations. This complexity is similar
to the cost of performing SVD or QR decompositions, but the constant in front of n3 is
smaller.

Uses of LU factorizations

Note that, if this factorization succeeds, we can immediately perform a couple of useful
operations:

• Given b ∈ Cn, the solution to Ax = b is x = U−1L−1b. Since L and U are triangular,
then application of each inverse requires only O(n2) work, which is less than the
straightforward n3 work usually required. The catch, of course, is that one must have
the LU factorization on hand. Note that, taking b = ej , this allows us to compute
column j of A−1.

• The factorization shows that detA = (detL)(detU). The determinants on the right-
hand side are simply the product of the diagonal entries. Recall from the LU factor-
ization procedure that the diagonal of L has entries 1. Therefore, we have detA =
detU =

∏n
j=1 uj,j . This is a computationally efficient method to compute determi-

nants of square matrices.
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Pivoting

Since matrices may not have LU factorizations, this seems to limit the applicability of
such factorizations. However, we can ensure that matrices have LU decompositions by
performing pivoting. First we need a definition.

Definition 1
Let [n] = {1, 2, . . . , n}. A permutation σ of [n] is a bijective map σ : [n]→ [n].

Informally, a permutation σ is a reordering of the elements in [n]. The bijectivity of this
map ensures that this is an actual reordering and not simply picking n values from [n]
with replacement, which allows for repeated values. This definition induces a definition of
permutation matrices.

Definition 2
A matrix P ∈ Cn×n is a permutation matrix if it has the form

P =
(
eσ(1) eσ(2) · · · eσ(n)

)
,

where ej, j = 1, . . . , n, is the canonical basis in Cn, and σ is a permutation of [n].

Permutation matrices perform exactly what they sound like: the operation Px produces a
vector whose entries are a reshuffling of the entries of x under the permutation map σ.
Permutations allow us to amend the deficiencies in the LU procedure via a process called
pivoting. If A ∈ Cn×n, recall that step k of the algorithm views the (n−k+ 1)× (n−k+ 1)
submatrix of the current reduced A. Suppose it has the form

Ãk =


y1,1 y1,2 · · · y1,n−k+1

y2,1 y2,2 · · · y2,n−k+1
...

...
. . .

...
yn−k+1,1 yn−k,2 · · · yn−k+1,n−k+1


The standard LU process assumes y1,1 is non-zero and uses it as the denominator in an
arithmetic division. When y1,1 is zero, the operation cannot proceed, and more generally
when |y1,1| is very small, the LU procedure can suffer numerical instabilities. Pivoting is a
strategy to ameliorate such instabilities.
For LU factorizations, we need not use y1,1 to eliminate all entries below it. Instead, we
may use y2,1 to eliminate all other entries in the first column, or we may even use y2,1 to

eliminate all entries in the second column of Ãk. Thus, we may choose any non-zero entry
in Ãk to perform elimination. The numerically stable strategy is to choose the value that
has the largest magnitude.
Choosing an entry that is not y1,1 doesn’t presere the lower-upper triangular geometric
configuration of the resulting factorization, unless we permute the columns and rows of A
so that the permuted matrix has the entry we desired in the (1, 1) position of Ãk. This
permutation to maximize the (1, 1) entry is called pivoting. Here are three popular forms
of pivoting:

• Full pivoting: Find the maximum-magnitude entry of Ãk. Define P and Q as row and
column permutation matrices, respectively, so that the (1, 1) entry of PÃkQ is this
maximum-magnitude entry.
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• Partial pivoting: Find the maximum-magnitude entry of the first column of Ãk. Define
P as a row permutation matrix so that the (1, 1) entry of PÃk is this maximum-
magnitude entry.

• Rook pivoting: Find the maximum-magnitude entry among both the first row and
column of Ãk. Define P and Q as row and column permutation matrices, respectively,
so that the (1, 1) entry of PÃkQ is this maximum-magnitude entry.

The most popular version is partial pivoting since this is the least expensive of the above
options and produces stable results. The more expensive full pivoting is the ideal choice,
but is expensive and the observed marginal benefit over partial pivoting is small. Rook
pivoting is a sort of compromise between the two methods.
Let us concentrate on partial pivoting: at each stage k, a row permutation matrix Pk is
defined that operates on the full matrix A, and collecting all these operations, we have

Pn−1Pn−2 · · ·P2P1A := PA = LU.

One can show that the matrix P is itself a permutation matrix. What is more difficult ot
discern from the above is that such a partial pivoting strategy allows us to complete the
LU factorization process without running into the problems we encountered with standard
Gaussian elimination:

Theorem 1. Let A be any invertible n × n matrix. Then the LU procedure with partial
pivoting always terminates successfully with the decomposition

PA = LU.
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