Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017
 Lecture notes: Modified Gram-Schmidt
 Friday September 13, 2019

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lecture 8
We recall the Gram-Schmidt procedure from the previous lecture: Let a_{1}, \ldots, a_{n} be any basis for \mathbb{C}^{n}. Our goal is to orthogonalize these vectors. The following inductive procedure generates an orthonormal set q_{1}, \ldots, q_{n} via the scalars $r_{i j}$:

$$
\begin{aligned}
u_{1} & =a_{1}, & r_{11} & =\left\|u_{1}\right\|, \\
r_{22} & =\left\|u_{2}\right\|, & q_{1} & =\frac{u_{1}}{r_{11}} \\
u_{2} & =a_{2}-P_{1} a_{2}, & q_{2} & =\frac{u_{2}}{r_{22}} \\
u_{k+1} & =a_{k+1}-P_{k} a_{k+1}, & r_{k+1, k+1} & =\left\|u_{k+1}\right\|,
\end{aligned}
$$

The projection matrix P_{k} is the orthogonal projection onto span $\left\{q_{1}, \ldots, q_{k}\right\}$. It turns out that using the Gram-Schmidt procedure to compute $Q R$ factorizations is quite numerically unstable when implemented on a computer. A relatively straightforward methodology to fix this problem is to perform the "modified" Gram-Schmidt procedure. The standard Gram-Schmidt procedure orthogonalizes a_{k+1} against a_{1}, \ldots, a_{k} in one step. The modified version performs this orthogonalization step-by-step. At iteration $k+1$:

$$
\begin{aligned}
r_{k, j} & =q_{k}^{*} a_{j}, & a_{j} & \leftarrow a_{j}-r_{k, j} q_{k} \\
r_{k+1, k+1} & =\left\|a_{k+1}\right\|, & q_{k+1} & =\frac{a_{k+1}}{\left\|a_{k+1}\right\|}
\end{aligned}
$$

Note that the procedure operates on and updates all columns a_{j} at every iteration. The modified Gram-Schmidt operations are arithemtically equivalent to the standard GramSchmidt operations, but the modified version is more stable due to effects of finite-precision on computers polluting the standard Gram-Schmidt operations.
If A is an $m \times n$ matrix, how much work is required to compute a $Q R$ factorization? We can estimate this via the modified Gram-Schmidt computations above: at iteration $k+1$ the following operations are performed

- Compute $r_{j, k}$ (m multiplications, $m-1$ additions) for $j=k+1, \ldots, n$
- Update a_{j} (m multiplications, m additions) for $j=k+1, \ldots, n$
- Compute $r_{k+1, k+1}$ (m multiplications, $m-1$ additions, 1 square root operation)
- Compute q_{k+1} (m multiplications)

We count each addition, multiplication, and here square roots as well, as a single floatingpoint operation (flop). Then summing up the operation count above over $k=1, \ldots, n-1$, yields

$$
\sum_{k=1}^{n-1}(2 m-1)(n-k)+2 m(n-k)+2 m+m \sim 2 m n^{2}
$$

where the notation \sim means

$$
f(n, m) \sim g(n, m) \quad \Longrightarrow \quad \lim _{n, m \rightarrow \infty} \frac{f(n, m)}{g(n, m)}=1
$$

Another way to communicate the computational complexity of this algorithm is to say that computing the $Q R$ factorization via modified Gram-Schmidt requires $\mathcal{O}\left(m n^{2}\right)$ work. The formal definition of big- \mathcal{O} notation is

$$
f(n)=\mathcal{O}(g(n)) \text { for large } n \quad \Longleftrightarrow \quad \limsup _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty
$$

