Department of Mathematics, University of Utah
 Analysis of Numerical Methods I
 MTH6610 - Section 001 - Fall 2017

 Lecture notes

 Lecture notes
 Wednesday August 21, 2019

These notes are not a substitute for class attendance. Their main purpose is to provide a lecture overview summarizing the topics covered.

Reading: Trefethen \& Bau III, Lectures 1, 2, 3
Vectors in \mathbb{C}^{n} are written with lowercase letters, e.g., v, and matrices in $\mathbb{C}^{m \times n}$ in uppercase letters, e.g., A. We assume you know the following basic concepts and topics:

- matrix-vector and matrix-matrix multiplication
- outer products
- basis, linear independence, rank, matrix inverse, determinant, eigenvalues
- complex arithmetic
- inner products
- matrix (Hermitian) transpose

Given $u, v \in \mathbb{C}^{n}$, the inner product of two vectors is given by

$$
\langle u, v\rangle=v^{*} u=\sum_{j=1}^{n} \bar{v}_{j} u_{j},
$$

where \bar{v}_{j} denotes the complex conjugate of $v_{j} \in \mathbb{C}$. Standard linear algebraic operations can be defined using the inner product: angles between vectors, lengths of vectors, scalar and vector projections, orthogonality.

Definition 1

A set V of vectors is an orthogonal set if $\langle u, v\rangle=0$ for all $u, v \in V$ with $u \neq v$. V is a set of orthonormal vectors if, in addition to being an orthogonal set, each vector in V has unit length.

Orthonormal vectors are useful since they can be used to easily perform orthogonal decompositions of arbitrary vectors.

Definition 2

A matrix $U \in \mathbb{C}^{n \times n}$ is unitary if $U^{*}=U^{-1}$. (Thus $U^{*} U=I$, where I is the $n \times n$ identity matrix.)

Unitary matrices preserve lengths and Euclidean structure.
The standard approach to computing the "size" of a vector is a norm.

Definition 3

A map $\|\cdot\|: \mathbb{C}^{n} \rightarrow \mathbb{R}$ is a norm if it satisfies all of the following properties for every $x \in \mathbb{C}^{n}$ and every $c \in \mathbb{C}$:
a. $\|x\| \geq 0$, with $\|x\|=0$ iff $x=0$
b. $\|x+y\| \leq\|x\|+\|y\|$
c. $\|c x\|=|c|\|x\|$

There are many ways of defining norms; the most common are the p-norms:

$$
\|x\|_{p}=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}, \quad 1 \leq p<\infty
$$

along with $\|x\|_{\infty}=\max _{1 \leq j \leq n}\left|x_{j}\right|$. Various relationships between these norms exist, for example, Hölder's inequality:

$$
|\langle u, v\rangle| \leq\|u\|_{p}\|v\|_{q}, \quad \frac{1}{p}+\frac{1}{q}=1
$$

A special case of this with $p=q=2$ is the Cauchy-Schwarz inequality.
Norms on matrices are operations $\|\cdot\|$ satisfying the same properties as for vector norms. Two popular matrix norms are the induced (p, q)-matrix norms

$$
\|A\|_{p, q}=\sup _{\substack{x \in \mathbb{C}^{n} \\ x \neq 0}} \frac{\|A x\|_{p}}{\|x\|_{q}}
$$

When $p=q$ we write $\|A\|_{p}$. Another popular norm is the Frobenius norm,

$$
\|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|A_{i, j}\right|^{2}\right)^{1 / 2}=\sqrt{\operatorname{trace}\left(A^{*} A\right)}
$$

Induced matrix norms are submultiplicative. The induced 2-norm and the Frobenius norm are invariant under unitary multiplication.

