
Department of Mathematics, University of Utah
Analysis of Numerical Methods I

MATH 6610 – Section 001 – Fall 2019
Homework 4

Approximation techniques

Due Thursday, December 5, 2019 by 11:59pm MT

Submission instructions:
Create a private repository on github.com named math6610-homework-4. Add
your LATEX source files and your Matlab/Python code and push to Github. To
submit: grant me (username akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not
look at your submission until the due date+time specified above. If you choose this
route, I will only grade the assignment associated with the last commit before the
due date.
All commits timestamped after the due date+time will be ignored.

P1. This problem concerns univariate polynomial interpolation.

(a) Let f(x) = x3−1. Without a computer, compute the degree-3 polynomial
that interpolates f(x) at x = −1, 0, 1, 2.

(b) Let g(x) = x4−1. Without a computer, compute the degree-3 polynomial
that interpolates g(x) at x = −1, 0, 1, 2.

(c) Let h(x) = 1/(1+5x2). Let hN (x) denote the degree-(N −1) polynomial
interpolant of h(x) at N equispaced points on the interval [−1, 1]. Write
a program that plots h and the interpolant hN for N = 5, 20, 50.

(d) Write a program that plots the Lebesgue function for equispaced points
on this interval for N = 5, 20, 50. Use this to explain your findings in the
previous part.

(e) Let jN (x) denote the degree-(N − 1) polynomial interpolant of h(x) at
N Chebyshev points on [−1, 1]. Write a program that plots h and the
interpolant hN for N = 5, 20, 50.

(f) Write a program that plots the Lebesgue function for Chebyshev points
on this interval for N = 5, 20, 50. Use this to explain your findings in the
previous part.

P2. Let w(x) be a strictly positive, bounded weight function on an interval I on
the real line. (I may be unbounded if w decays at infinity sufficiently quickly.)
Given x1, . . . , xN ∈ I, let IN be the associated degree-(N − 1) polynomial
interpolation operator, i.e., if f is continuous, then INf is degree-(N − 1)
polynomial that interpolates f at the xj . Define

Cw(I) =
{
f : I → R

∣∣ ‖f‖w,∞ <∞
}
, ‖f‖w,∞ := sup

x∈I
w(x)|f(x)|.

Prove the following weighted version of Lebesgue’s Lemma,

‖f − INf‖w,∞ ≤ [1 + Λw] inf
p∈PN−1

‖f − p‖w,∞ ,
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where PN−1 is the space of polynomials of degree at most N − 1, and

Λw = sup
x∈I

w(x)
N∑
j=1

|`j(x)|
w(xj)

,

where `j ∈ PN−1 is the cardinal Lagrange interpolant, `j(xi) = δi,j .

P3. Define the standard L2 Sobolev spaces of periodic functions on [0, 2π]: Given
a non-negative integer s,

Hs
p([0, 2π]) =

{
f : [0, 2π]→ C

∣∣ f (r)(0) = f (r)(2π) for r = 0, . . . s− 1, and ‖f‖Hs
p
<∞

}
,

where f (r) denotes the rth derivative of f (with f (0) ≡ f), and

‖f‖2Hs
p

=
s∑
j=0

∥∥∥f (j)∥∥∥2
L2

=
s∑
j=0

∫ 2π

0

∣∣∣f (j)(x)
∣∣∣2 dx.

Let fN denote the frequency-(N − 1) Fourier Series approximation to f on
[0, 2π], i.e.,

fN (x) =
∑
|j|<N

f̂j(x)
1√
2π
eijx.

Prove that,

‖f − fN‖Hj
p
≤ N j−s ‖f‖Hs

p
, 0 ≤ j ≤ s

P4. This problem concerns interpolative quadrature formulas. All these problems
should be done without a computer.

(a) Compute weights for the closed 4-point Newton-Cotes rule on [−1, 1].

(b) Consider weights wj and w′j for a quadrature rule of the form∫ 1

0
f(x) dx ≈ w0f(0) + w1f(1) + w′0f

′(0) + w′1f
′(1),

where f ′ is the derivative of f . Compute these weights for a quadrature
rule that is exact for all polynomials up to degree 3.

(c) Consider a quadrature rule of the form∫ 1

−1
f(x) dx ≈

3∑
j=1

wjf(xj),

and assume that the xj are distinct points. Someone claims that this
quadrature rule is exact for all polynomials up to degree 3. Is this possi-
ble? If so, give conditions on xj that must be satisfied for this to hold.
If it’s not possible, prove that it’s not possible.

P5. This problem concerns interpolative differentiation formulas. All these prob-
lems should be done without a computer.
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(a) Given h > 0, compute weights for the following one-sided differentation
formula:

f ′(x) = w0f(x) + w1f(x+ h) + w2f(x+ 2h) + O(h2)

(b) Given h > 0, compute the weights for the following central differentiation
formula:

f ′′(x) = w−1f(x− h) + w0f(x) + w1f(x+ h) + O(h2)

P6. Recall that the error due to degree-(N − 1) polynomial interpolation of a
smooth function f on some compact interval [a, b] 3 x is bounded by

‖f(x)− INf(x)‖∞ ≤
‖ω(x)‖∞

N !

∥∥∥f (n+1)
∥∥∥
∞
, (1)

where ω(x) is the node polynomial, defined from the N nodes {x1, . . . xN} as

ω(x) = ω(x;X) :=
N∏
j=1

(x− xj), X := {x1, . . . , xN}.

The only portion of the bound (1) that depends on the nodal choice is the
appearance of ω(x). Thus, one expects that a good interpolation set can be
designed if we choose {x1, . . . xN} such that

{x1, . . . xN} = X = argmin
Y⊂[a,b]N

‖ω(x;Y )‖∞

This optimization problem is usually too difficult to solve analytically or com-
putationally (for example, the feasible set is N -dimensional, which complicates
matters for large N). A relaxation of this optimization is a greedy approach,
wherein one iteratively chooses nodes. Since we desire the smallest possible
value of ‖ω‖∞, a greedy scheme would pick a new point where ω is largest:

xj+1 := argmax
x∈[a,b]

|ω(x;Xj)| , Xj+1 := Xj ∪ {xj+1}. (2)

This is reasonable since while ω(xj+1;Xj) may be a large value, ω(xj+1;Xj+1) =
0. Let x1 (and hence X1) be some given choice of initial node. The sequeunce
{xj}j≥1 produced by (2) is called a Leja sequence. Let us relax (2) even fur-
ther, by iteratively maximizing not over the continuum [a, b], but instead over
some given discrete set Y = {y1, . . . , yM} ⊂ [a, b]:

xj+1 := argmax
x∈Y

|ω(x;Xj)| , Xj+1 := Xj ∪ {xj+1}. (3)

Naturally, this means we terminate the iteration (3) after xM is chosen. The
sequence produced by (3) is a discrete Leja sequence. Note that for any N ≤
M , N -point polynomial interpolation with this sequence uses the first N points
x1, . . . , xN .
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(a) Write a program that computes a 50-point discrete Leja sequence on
[−1, 1]. You should choose M � 50, say M = 1000, and let Y be equis-
paced on [−1, 1]. Empirically evaluate the distribution of this sequence;
how does their distribution compare to say those of equidistant nodes or
Chebyshev nodes? How does the N -point interpolation error behave for
the function h(x) in problem P1? What about the N -point Lebesgue
function/constant?

(b) For a given Y , let V ∈ RM×N be a Vandermonde-like matrix with entries,

(V )j,k = yk−1j , j = 1, . . . ,M, k = 1, . . . , N.

Consider the row (partial) pivoted LU decomposition of V and a permu-
tation vector p:

PV = LU, p := P


1
2
3
...
M


With the choice x1 = y1, prove that the first N pivots in p identify the
discrete Leja sequence {xj}Nj=1 in (3). I.e., that xj = ypj , where pj are
the elements of p.

Akil Narayan: akil (at) sci.utah.edu 4


