Department of Mathematics, University of Utah

 Analysis of Numerical Methods I

 Analysis of Numerical Methods I
 MATH 6610 - Section 001 - Fall 2019 Homework 3
 $L U$ and Cholesky factorizations

Due Monday, November 4, 2019 by by 11:59pm MT

Submission instructions:

Create a private repository on github.com named math6610-homework-3. Add your ${ }^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source files and your Matlab/Python code and push to Github. To submit: grant me (username akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not look at your submission until the due date+time specified above. If you choose this route, I will only grade the assignment associated with the last commit before the due date.
All commits timestamped after the due date+time will be ignored.

Problem assignment:

Trefethen \& Bau III, Lecture 20: \# 20.1
Trefethen \& Bau III, Lecture 21: \# 21.6
Trefethen \& Bau III, Lecture 22: \# 22.3
Trefethen \& Bau III, Lecture 23: \# 23.1
Trefethen \& Bau III, Lecture 24: \# 24.1, 24.4
Additional problems:
P1. Let $P \in \mathbb{R}^{n \times n}$ be a permutation matrix.
(a) Prove that P^{T} is also a permutation matrix.
(b) Prove that $P^{T}=P^{-1}$.
(c) Prove that if P_{1} and P_{2} are both permutation matrices, then $P_{1} P_{2}$ is also a permutation matrix.
(d) Is it true in general that $P^{2}=P$? If so, prove it. If not, give a counterexample.
P2. Let $A \in \mathbb{C}^{n \times n}$ be invertible. Prove that the $L U$ decomposition algorithm with partial pivoting always successfully computes $P A=L U$.
P3. Given $A \in \mathbb{C}^{m \times n}$, consider a column-pivoted QR decomposition, i.e., a factorization of the form,

$$
A P=Q R,
$$

where P is a permutation matrix that is chosen in the following way: At step j in the orthogonalization process (say step j of Gram-Schmidt), the columns $j, j+1, \ldots, n$ are permuted/pivoted so that $r_{j j}$ will be as large as possible.

Note that the vector p defined as

$$
p:=P^{T}\left(\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
n
\end{array}\right) \in \mathbb{R}^{n}
$$

has entries that identify the column pivots, i.e., the ordered column indices of A chosen by the pivoting process.
(a) (Column-pivoted QR decompositions are rank-revealing, in a sense.) Prove that the number of nonzero diagonal entries in R equals the rank of A.
(b) (Column-pivoted QR is greedy determinant maximization.) Let $r=$ $\operatorname{rank}(A)$. For S any subset of $\{1,2, \ldots, n\}$, let A_{S} denote the $m \times|S|$ submatrix of A formed by selected the column indices in S. Furthermore, let $G_{S} \in \mathbb{C}^{|S| \times|S|}$ be defined as

$$
G_{S}=\left(A_{S}\right)^{*} A_{S}
$$

Consider the following iterative, greedy, determinant maximization:

$$
s_{j}=\operatorname{argmax}_{k \in\{1, \ldots, n\}} \operatorname{det} G_{S_{j-1} \cup\{k\}}, \quad S_{j}:=S_{j-1} \cup\left\{s_{j}\right\} .
$$

Where $S_{0}:=\{ \}$. If each maximization yields a unique s_{j}, show that $p_{j}=s_{j}$ for $j=1, \ldots, r$.
P4. Let $A \in \mathbb{C}^{m \times n}$, and let $r=\operatorname{rank}(A)$. Show that the LU factorization with partial row pivoting,

$$
P A=L U,
$$

selects pivots via another kind of greedy determinant maximization. I.e., with S as in the previous problem, let ${ }_{S} A$ denote the $|S| \times n$ matrix formed by selecting the rows with indices S from A. Consider the optimization problem

$$
s_{j}=\operatorname{argmin}_{k \in\{1, \ldots, m\}}\left|\operatorname{det} S_{S_{j-1} \cup\{k\}} A_{\{1, \ldots, j\}}\right|
$$

for $j \geq 1$ where again $S_{0}=\{ \}$. If each maximization yields a unique s_{j}, show that, for $j=1, \ldots, r, s_{j}$ is the j th entry of the vector p defined by

$$
p:=P\left(\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
m
\end{array}\right) \in \mathbb{R}^{m}
$$

