DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Analysis of Numerical Methods I MATH 6610 – Section 001 – Fall 2019 Homework 3 LU and Cholesky factorizations

Due Monday, November 4, 2019 by by 11:59pm MT

Submission instructions:

Create a private repository on github.com named math6610-homework-3. Add your \mbox{LAT}_{EX} source files and your Matlab/Python code and push to Github. To submit: grant me (username akilnarayan) write access to your repository.

You may grant me write access before you complete the assignment. I will not look at your submission until the due date+time specified above. If you choose this route, I will only grade the assignment associated with the last commit before the due date.

All commits timestamped after the due date+time will be ignored.

Problem assignment:

Trefethen & Bau III, Lecture 20: # 20.1 Trefethen & Bau III, Lecture 21: # 21.6 Trefethen & Bau III, Lecture 22: # 22.3 Trefethen & Bau III, Lecture 23: # 23.1 Trefethen & Bau III, Lecture 24: # 24.1, 24.4

Additional problems:

P1. Let $P \in \mathbb{R}^{n \times n}$ be a permutation matrix.

- (a) Prove that P^T is also a permutation matrix.
- (b) Prove that $P^T = P^{-1}$.
- (c) Prove that if P_1 and P_2 are both permutation matrices, then P_1P_2 is also a permutation matrix.
- (d) Is it true in general that $P^2 = P$? If so, prove it. If not, give a counterexample.
- **P2.** Let $A \in \mathbb{C}^{n \times n}$ be invertible. Prove that the *LU* decomposition algorithm with partial pivoting always successfully computes PA = LU.
- **P3.** Given $A \in \mathbb{C}^{m \times n}$, consider a *column-pivoted* QR decomposition, i.e., a factorization of the form,

$$AP = QR,$$

where P is a permutation matrix that is chosen in the following way: At step j in the orthogonalization process (say step j of Gram-Schmidt), the columns $j, j + 1, \ldots, n$ are permuted/pivoted so that r_{jj} will be as large as possible.

Note that the vector p defined as

$$p \coloneqq P^T \begin{pmatrix} 1\\2\\3\\\vdots\\n \end{pmatrix} \in \mathbb{R}^n$$

has entries that identify the *column pivots*, i.e., the ordered column indices of A chosen by the pivoting process.

- (a) (Column-pivoted QR decompositions are *rank-revealing*, in a sense.) Prove that the number of nonzero diagonal entries in R equals the rank of A.
- (b) (Column-pivoted QR is greedy determinant maximization.) Let $r = \operatorname{rank}(A)$. For S any subset of $\{1, 2, \ldots, n\}$, let A_S denote the $m \times |S|$ submatrix of A formed by selected the column indices in S. Furthermore, let $G_S \in \mathbb{C}^{|S| \times |S|}$ be defined as

$$G_S = (A_S)^* A_S$$

Consider the following iterative, greedy, determinant maximization:

$$s_j = \operatorname{argmax}_{k \in \{1, \dots, n\}} \det G_{S_{j-1} \cup \{k\}}, \qquad S_j \coloneqq S_{j-1} \cup \{s_j\}.$$

Where $S_0 := \{\}$. If each maximization yields a unique s_j , show that $p_j = s_j$ for $j = 1, \ldots, r$.

P4. Let $A \in \mathbb{C}^{m \times n}$, and let $r = \operatorname{rank}(A)$. Show that the LU factorization with partial row pivoting,

$$PA = LU,$$

selects pivots via another kind of greedy determinant maximization. I.e., with S as in the previous problem, let ${}_{S}A$ denote the $|S| \times n$ matrix formed by selecting the rows with indices S from A. Consider the optimization problem

$$s_j = \operatorname{argmin}_{k \in \{1, \dots, m\}} \left| \det S_{j-1} \cup \{k\} A_{\{1, \dots, j\}} \right|$$

for $j \ge 1$ where again $S_0 = \{\}$. If each maximization yields a unique s_j , show that, for $j = 1, \ldots, r, s_j$ is the *j*th entry of the vector *p* defined by

$$p \coloneqq P \begin{pmatrix} 1\\2\\3\\\vdots\\m \end{pmatrix} \in \mathbb{R}^m$$