Due Monday, September 30, 2019 by 11:59pm MT

Submission instructions:

Create a private repository on github.com named math6610-homework-2. Add your IAT_EX source files and your Matlab/Python code and push to Github. To submit: grant me (username akilnarayan) write access to your repository.

You may grant me write access before you complete the assignment. I will not look at your submission until the due date+time specified above. If you choose this route, I will only grade the assignment associated with the last commit before the due date.

All commits timestamped after the due date+time will be ignored.

Problem assignment:

In all the following exercises, if a program in Matlab is requested, replace those instructions with a request to write a program in the language of your choice.

Trefethen & Bau III, Lecture 6: # 6.2, 6.4 Trefethen & Bau III, Lecture 7: # 7.3, 7.5 Trefethen & Bau III, Lecture 9: # 9.2 (You need not internalize lecture #9 to do this problem, nor must you use or know how to use Matlab) Trefethen & Bau III, Lecture 10: # 10.1, 10.2 Trefethen & Bau III, Lecture 12: # 12.3

Additional problems:

- **P1.** Let $M \in [1, \infty)$ and $n \ge 2$ be arbitrary. Explicitly construct a projection matrix $P \in \mathbb{R}^{n \times n}$ such that $\|P\|_2 = M$.
- **P2.** Let P be a projection matrix. Show that $\ker(P) \perp \operatorname{range}(P)$ if and only if $P = P^*$. (I.e., I am asking you to prove a result that justifies the definition of an orthogonal projector.)
- **P3.** Let $A \in \mathbb{C}^{m \times n}$ have rank r and *reduced* SVD

$$A = \widetilde{U}\widetilde{\Sigma}\widetilde{V}^*$$

The Moore-Penrose pseudoinverse of A is defined as

$$A^+ = \widetilde{V}\widetilde{\Sigma}^{-1}\widetilde{U}^*$$

Prove the following:

(a) If A is invertible (hence also square), then $A^{-1} = A^+$.

- (b) Prove that the matrices AA^+ , A^+A , $I AA^+$, and $I A^+A$ are all projection matrices. Are they orthogonal? How would you characterize their ranges and kernels in terms of the fundamental subspaces defined by the matrix A?
- (c) Give and prove conditions on A so that $AA^+A = A$.
- (d) Show that $||A^+||_2 = 1/\sigma_r(A)$
- (e) In the induced matrix ℓ^2 norm $\|\cdot\|$, is the operation $A \mapsto A^+$ wellconditioned? That is, given an arbitrary but fixed A and a perturbation matrix B, is $||(A + B)^+ - A^+||/||A^+||$ controllable by ||B||/||A||? Prove it, or give a counterexample.

P4. Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^n$ be given. Show that $x = A^+ b$ solves

$$\min_{z \in \mathbb{C}^n} ||z||_2 \quad \text{subject to} \quad ||Az - b||_2 \text{ is minimized},$$

What is the difference between this x and the linear least-squares solution to Az = b?