Department of Mathematics, University of Utah

Analysis of Numerical Methods I

 MATH 6610 - Section 001 - Fall 2019 Homework 1Basic linear algebra and the SVD

Due Monday, September 9, 2019 by 11:59pm MT

Submission instructions:

Create a private repository on github.com named math6610-homework-1. Add your $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source files and your Matlab/Python code and push to Github. To submit: grant me (username akilnarayan) write access to your repository.
You may grant me write access before you complete the assignment. I will not look at your submission until the due date+time specified above. If you choose this route, I will only grade the assignment associated with the last commit before the due date.
All commits timestamped after the due date+time will be ignored.

Problem assignment:

Trefethen \& Bau III, Lecture 1: \# 1.3
Trefethen \& Bau III, Lecture 2: \# 2.1, 2.2, 2.3, 2.5, 2.6
Trefethen \& Bau III, Lecture 3: \# 3.1, 3.3, 3.5
Trefethen \& Bau III, Lecture 4: \# 4.1 (a-c), 4.4
Trefethen \& Bau III, Lecture 5: \# 5.1, 5.2, 5.3, 5.4

Programming assignment:

1. (Computing the SVD) In either Matlab or Python, explore computational times for computing the SVD for large matrices. Let A be an $m \times n$ matrix, and compile running times for computing the SVD for both m and n ranging from small numbers (say, 5) up to large numbers (as large as your computer can handle in a reasonable amount of time). Plot the computational time to compute the SVD of A as a function of m and n. The formal complexity of the SVD is $\mathcal{O}\left(\min \left(m^{2} n, m n^{2}\right)\right)$. Do you observe this complexity in your plots?
For both Matlab and Python, you may find the mesh, surf, and/or pcolor visualization tools helpful for this exercise. For Python, these functions are accessible in the matplotlib.pyplot module.
