Properties of linear systems of DE's

MATH 2250 Lecture 34
Book section 7.2

November 25, 2019

Vector- and matrix-valued functions (1/2)

Before continuing with DE's, we first note that vectors and matrices can be functions.

For example, we can have

$$
\boldsymbol{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \boldsymbol{A}(t)=\left(\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\
\vdots & \vdots & & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t)
\end{array}\right)
$$

Vector- and matrix-valued functions (1/2)

Before continuing with DE's, we first note that vectors and matrices can be functions.

For example, we can have

$$
\boldsymbol{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \boldsymbol{A}(t)=\left(\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \cdots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2 n}(t) \\
\vdots & \vdots & & \vdots \\
a_{n 1}(t) & a_{n 2}(t) & \cdots & a_{n n}(t)
\end{array}\right)
$$

These functions have continuity or differentiability, if each of their components is continuous or differentiable, respectively.

Vector- and matrix-valued functions (2/2)

If $\boldsymbol{A}(t)$, and $\boldsymbol{B}(t)$ are matrix-valued functions, \boldsymbol{C} is a constant matrix, and c is a scalar, then the following differentiation properties hold:

- $\frac{\mathrm{d}}{\mathrm{d} t}(\boldsymbol{A}+\boldsymbol{B})=\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{A}+\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{B}$
- $\frac{\mathrm{d}}{\mathrm{d} t}(\boldsymbol{A B})=\boldsymbol{A} \frac{\mathrm{d} \boldsymbol{B}}{\mathrm{d} t}+\frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t} \boldsymbol{B}$
- $\frac{\mathrm{d}}{\mathrm{d} t}(c \boldsymbol{A})=c \frac{\mathrm{~d} \boldsymbol{A}}{\mathrm{~d} t}$
- $\frac{\mathrm{d}}{\mathrm{d} t}(\boldsymbol{C A})=\boldsymbol{C} \frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t}$
- $\frac{\mathrm{d}}{\mathrm{d} t}(\boldsymbol{A C})=\frac{\mathrm{d} \boldsymbol{A}}{\mathrm{d} t} \boldsymbol{C}$

First-order systems of linear DE's

We consider the following first-order linear system:

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x},
$$

where $\boldsymbol{x}(t)$ is a size- n vector, and \boldsymbol{A} is an $n \times n$ matrix.

First-order systems of linear DE's

We consider the following first-order linear system:

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}
$$

where $\boldsymbol{x}(t)$ is a size- n vector, and \boldsymbol{A} is an $n \times n$ matrix.
Note that \boldsymbol{A} can depend on t : all the results we discuss here apply to this case.

However, in practice in this class we will generally only consider \boldsymbol{A} as constant.

First-order systems of linear DE's

We consider the following first-order linear system:

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x},
$$

where $\boldsymbol{x}(t)$ is a size- n vector, and \boldsymbol{A} is an $n \times n$ matrix.
Note that \boldsymbol{A} can depend on t : all the results we discuss here apply to this case.

However, in practice in this class we will generally only consider \boldsymbol{A} as constant.

The general first-order, linear, nonhomogeneous DE that we consider is

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{f}(t) .
$$

If $f \equiv 0$, then the equation is homogeneous.

Superposition

Most of our scalar DE theory extends to systems. We start with the principle of superposition.

If $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are all solutions to the homogeneous DE

$$
\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x},
$$

then

$$
\boldsymbol{x}(t)=\sum_{j=1}^{n} c_{j} \boldsymbol{x}_{j}(t)=c_{1} \boldsymbol{x}_{1}(t)+c_{2} \boldsymbol{x}_{2}(t)+\cdots+c_{n} \boldsymbol{x}_{n}(t),
$$

is also a solution to the $D E$.

Example

Example (Example 7.2.2)

Verify that

$$
\boldsymbol{x}_{1}(t)=\binom{3 e^{2 t}}{2 e^{2 t}}, \quad \boldsymbol{x}_{2}(t)=\binom{e^{-5 t}}{3 e^{-5 t}}
$$

solve the DE

$$
\boldsymbol{x}^{\prime}(t)=\left(\begin{array}{cc}
4 & -3 \\
6 & -7
\end{array}\right)
$$

Also, compute a solution $\boldsymbol{x}(t)$ satisfying $\boldsymbol{x}(0)=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$.

Linear independence (1/2)

Linear independence for vector-valued functions is defined as expected: The size- n vector-valued functions $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are linearly independent on the interval I if the equation

$$
c_{1} \boldsymbol{x}_{1}(t)+\cdots+c_{n} \boldsymbol{x}_{n}(t)=\mathbf{0}
$$

is true for all t in I only when $c_{1}=\cdots=c_{n}=0$. Otherwise, they are linearly dependent.

Linear independence (1/2)

Linear independence for vector-valued functions is defined as expected:
The size- n vector-valued functions $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are linearly independent on the interval I if the equation

$$
c_{1} \boldsymbol{x}_{1}(t)+\cdots+c_{n} \boldsymbol{x}_{n}(t)=\mathbf{0}
$$

is true for all t in I only when $c_{1}=\cdots=c_{n}=0$.
Otherwise, they are linearly dependent.
Linear independence can be explicitly tested with the Wronskian. The scalar function

$$
W(t):=\operatorname{det}\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
\boldsymbol{x}_{1}(t) & \boldsymbol{x}_{2}(t) & \cdots & \boldsymbol{x}_{n}(t) \\
\mid & \mid & \cdots & \mid
\end{array}\right)
$$

is the Wronskian of $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$.

Linear independence (2/2)

If $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are solutions to a linear, homogeneous system of n DE's, then

- $W(t) \equiv 0$ for all t in I if and only if the functions are linearly dependent on I.
- $W(t) \neq 0$ for all t in I if and only if the functions are linearly independent on I.

Linear independence (2/2)

If $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are solutions to a linear, homogeneous system of n DE's, then

- $W(t) \equiv 0$ for all t in I if and only if the functions are linearly dependent on I.
- $W(t) \neq 0$ for all t in I if and only if the functions are linearly independent on I.

Example (Example 7.2.3)

Verify that the three functions

$$
\boldsymbol{x}_{1}(t)=\left(\begin{array}{c}
2 e^{t} \\
2 e^{t} \\
e^{t}
\end{array}\right), \quad \boldsymbol{x}_{2}(t)=\left(\begin{array}{c}
2 e^{3 t} \\
0 \\
-e^{3 t}
\end{array}\right), \quad \boldsymbol{x}_{3}(t)=\left(\begin{array}{c}
2 e^{5 t} \\
-2 e^{5 t} \\
e^{5 t}
\end{array}\right),
$$

are linearly independent on $I=\mathbb{R}$.

Solutions to homogeneous DE's

From linearly independent solutions, we obtain general solutions:

Theorem

Consider the size-n system of DE's $\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}$, and suppose that \boldsymbol{A} is continuous for every t in I. If $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are a linearly independent set of solutions, then

$$
\boldsymbol{x}(t)=\sum_{j=1}^{n} c_{j} \boldsymbol{x}_{j}(t)
$$

is the general solution to the $D E$ for arbitrary c_{1}, \ldots, c_{n}. (I.e., there are no other solutions.)

Solutions to non-homogeneous DE's

General solutions to non-homogeneous solutions work similarly:

Theorem

Consider the size-n system of non-homogeneous DE's $\boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{f}(t)$, and suppose that \boldsymbol{A} is continuous for every t in I. Suppose that $\boldsymbol{x}_{1}(t), \ldots, \boldsymbol{x}_{n}(t)$ are a linearly independent set of solutions to the homogeneous $D E \boldsymbol{x}^{\prime}(t)=\boldsymbol{A} \boldsymbol{x}(t)$, and suppose that $\boldsymbol{x}_{p}(t)$ is any solution to the non-homogeneous $D E$. Tnen

$$
\boldsymbol{x}(t)=\boldsymbol{x}_{p}(t)+\sum_{j=1}^{n} c_{j} \boldsymbol{x}_{j}(t)
$$

is the general solution to the non-homogeneous $D E$ for arbitrary c_{1}, \ldots, c_{n}. (I.e., there are no other solutions.)

Example

Example (Example 7.2.5)

Consider the DE system initial value problem

$$
\begin{array}{rlcccccccc}
x^{\prime}(t) & = & 3 x & -2 y & & -9 t & 13, & & x_{1}(0) & = \\
0 & 0 \\
y^{\prime}(t) & = & -x & 3 y & -2 z & 7 t & -15, & x_{2}(0) & = & 1 \\
z^{\prime}(t) & = & & -y & 3 z & -6 t & 7, & x_{3}(0) & = & -3
\end{array}
$$

With $\boldsymbol{x}=(x, y, z)^{T}$, the functions

$$
\boldsymbol{x}_{1}(t)=\left(\begin{array}{c}
2 e^{t} \\
2 e^{t} \\
e^{t}
\end{array}\right), \quad \boldsymbol{x}_{2}(t)=\left(\begin{array}{c}
2 e^{3 t} \\
0 \\
-e^{3 t}
\end{array}\right), \quad \boldsymbol{x}_{3}(t)=\left(\begin{array}{c}
2 e^{5 t} \\
-2 e^{5 t} \\
e^{5 t}
\end{array}\right)
$$

are solutions to homogeneous DE, and

$$
\boldsymbol{x}_{p}(t)=\left(\begin{array}{c}
3 t \\
5 \\
2 t
\end{array}\right)
$$

is a solution to the non-homogeneous $D E$. Solve the initial value problem.

