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L33-S01Systems of DE’s

We have previously studied nth-order DE’s for ypxq of the form:

F px, y, y1, y2, . . . ypnqq “ 0,

where F may be a nonlinear function of y and/or its derivatives.

We have constructive methods to solve this problem when F is linear in y
and its derivatives.

Our focus is now on systems of DE’s, i.e., DE’s for multiple variables.
For two dependent variables ypxq and zpxq, a system takes the form

F px, y, y1, y2, . . . ypnq, z, z1, z2, . . . , zpnqq “ 0,

Gpx, y, y1, y2, . . . ypnq, z, z1, z2, . . . , zpnqq “ 0,

for two different functions F and G.
In this class, we will focus exclusively on understanding first-order (n “ 1),
linear systems of DE’s.
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L33-S02Motivation

Systems of DE’s arise when unknowns are coupled with each other:366 Chapter 7 Linear Systems of Differential Equations

Initial Applications
Examples 1 and 2 further illustrate how systems of differential equations arise nat-
urally in scientific problems.

Example 1 Dual mass-spring system Consider the system of two masses and two springs shown in
Fig. 7.1.1, with a given external force f .t/ acting on the right-hand mass m2. We denote byk1 k2

m2m1

Equilibrium positions

y (t)

f (t)

x (t)

FIGURE 7.1.1. The mass-and-
spring system of Example 1.

x.t/ the displacement (to the right) of the mass m1 from its static equilibrium position [when
the system is motionless and in equilibrium and f .t/D 0] and by y.t/ the displacement of the
mass m2 from its static position. Thus the two springs are neither stretched nor compressed
when x and y are zero.

In the configuration in Fig. 7.1.1, the first spring is stretched x units and the second by
y ! x units. We apply Newton’s law of motion to the two “free body diagrams” shown in
Fig. 7.1.2; we thereby obtain the system

m1x
00 D !k1x C k2.y ! x/;

m2y
00 D !k2.y ! x/C f .t/

(3)

of differential equations that the position functions x.t/ and y.t/ must satisfy. For instance,
if m1 D 2, m2 D 1, k1 D 4, k2 D 2, and f .t/ D 40 sin 3t in appropriate physical units, then
the system in (3) reduces tof (t)

k1x k2(y − x)

k2(y − x)

m1

m2

FIGURE 7.1.2. The free body
diagrams for the system of Example 1.

2x00 D !6x C 2y;

y00 D 2x ! 2y C 40 sin 3t:
(4)

Example 2 Dual brine tanks Consider two brine tanks connected as shown in Fig. 7.1.3. Tank 1
contains x.t/ pounds of salt in 100 gal of brine and tank 2 contains y.t/ pounds of salt in 200
gal of brine. The brine in each tank is kept uniform by stirring, and brine is pumped from
each tank to the other at the rates indicated in Fig. 7.1.3. In addition, fresh water flows into20 gal/min

Fresh water

y (t ) lb
200 gal

20 gal/min

10 gal/min

30 gal/min
Tank 2Tank 1

x (t ) lb
100 gal

FIGURE 7.1.3. The two brine tanks
of Example 2.

tank 1 at 20 gal=min, and the brine in tank 2 flows out at 20 gal=min (so the total volume of
brine in the two tanks remains constant). The salt concentrations in the two tanks are x=100
pounds per gallon and y=200 pounds per gallon, respectively. When we compute the rates
of change of the amount of salt in the two tanks, we therefore get the system of differential
equations that x.t/ and y.t/ must satisfy:
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—that is,

20x0 D !6x C y;

20y0 D 6x ! 3y:
(5)

First-Order Systems
Consider a system of differential equations that can be solved for the highest-order
derivatives of the dependent variables that appear, as explicit functions of t and
lower-order derivatives of the dependent variables. For instance, in the case of a
system of two second-order equations, our assumption is that it can be written in the
form

x00
1
D f1.t; x1; x2; x

0
1
; x0

2
/;

x00
2
D f2.t; x1; x2; x

0
1
; x0

2
/:

(6)

It is of both practical and theoretical importance that any such higher-order system
can be transformed into an equivalent system of first-order equations.
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L33-S03Systems vs high-order scalar DE’s

One key point to consider is that an nth order scalar DE can always be
written as a size-n system of first-order DE’s.

Example (Example 7.1.3)
Write the DE x3 ` 3x2 ` 2x1 ´ 5x “ sin 2t as a system of first-order DE’s.

Example (Example 7.1.4)
Write the following system as a system of first-order DE’s:

2x2 “ ´6x` 2y

y2 “ 2x´ 2y ` 40 sin 3t
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L33-S04Examples

We can also rewrite a first-order system as an nth order scalar DE.

Example (Example 7.1.5)
Compute the general solution to the first-order system

x1 “ ´2y

y1 “
1

2
x

Example (Example 7.1.6)
Compute the general solution to the first-order system

x1 “ y

y1 “ 2x` y
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