Linear systems of DE's

MATH 2250 Lecture 33
Book section 7.1

November 20, 2019

Systems of DE's

We have previously studied n th-order DE's for $y(x)$ of the form:

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}\right)=0
$$

where F may be a nonlinear function of y and/or its derivatives.
We have constructive methods to solve this problem when F is linear in y and its derivatives.

Systems of DE's

We have previously studied n th-order DE's for $y(x)$ of the form:

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}\right)=0
$$

where F may be a nonlinear function of y and/or its derivatives.
We have constructive methods to solve this problem when F is linear in y and its derivatives.

Our focus is now on systems of DE's, i.e., DE's for multiple variables. For two dependent variables $y(x)$ and $z(x)$, a system takes the form

$$
\begin{aligned}
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}, z, z^{\prime}, z^{\prime \prime}, \ldots, z^{(n)}\right)=0, \\
& G\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}, z, z^{\prime}, z^{\prime \prime}, \ldots, z^{(n)}\right)=0,
\end{aligned}
$$

for two different functions F and G.

We have previously studied n th-order DE's for $y(x)$ of the form:

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}\right)=0,
$$

where F may be a nonlinear function of y and/or its derivatives.
We have constructive methods to solve this problem when F is linear in y and its derivatives.

Our focus is now on systems of DE's, i.e., DE's for multiple variables. For two dependent variables $y(x)$ and $z(x)$, a system takes the form

$$
\begin{aligned}
& F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}, z, z^{\prime}, z^{\prime \prime}, \ldots, z^{(n)}\right)=0, \\
& G\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots y^{(n)}, z, z^{\prime}, z^{\prime \prime}, \ldots, z^{(n)}\right)=0,
\end{aligned}
$$

for two different functions F and G.
In this class, we will focus exclusively on understanding first-order ($n=1$), linear systems of DE's.

Motivation

Systems of DE's arise when unknowns are coupled with each other:

Systems vs high-order scalar DE's

One key point to consider is that an nth order scalar DE can always be written as a size- n system of first-order DE's.

Example (Example 7.1.3)
Write the DE $x^{\prime \prime \prime}+3 x^{\prime \prime}+2 x^{\prime}-5 x=\sin 2 t$ as a system of first-order DE's.

Systems vs high-order scalar DE's

One key point to consider is that an nth order scalar DE can always be written as a size- n system of first-order DE's.

Example (Example 7.1.3)

Write the DE $x^{\prime \prime \prime}+3 x^{\prime \prime}+2 x^{\prime}-5 x=\sin 2 t$ as a system of first-order DE's.

Example (Example 7.1.4)

Write the following system as a system of first-order DE's:

$$
\begin{aligned}
2 x^{\prime \prime} & =-6 x+2 y \\
y^{\prime \prime} & =2 x-2 y+40 \sin 3 t
\end{aligned}
$$

Examples

We can also rewrite a first-order system as an nth order scalar DE. Example (Example 7.1.5)
Compute the general solution to the first-order system

$$
\begin{aligned}
x^{\prime} & =-2 y \\
y^{\prime} & =\frac{1}{2} x
\end{aligned}
$$

Examples

We can also rewrite a first-order system as an nth order scalar DE.

Example (Example 7.1.5)

Compute the general solution to the first-order system

$$
\begin{aligned}
x^{\prime} & =-2 y \\
y^{\prime} & =\frac{1}{2} x
\end{aligned}
$$

Example (Example 7.1.6)
Compute the general solution to the first-order system

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =2 x+y
\end{aligned}
$$

