Matrix diagonalization

MATH 2250 Lecture 32
Book section 6.2

November 19, 2019

Eigenvalues and eigenvectors

Given a square $n \times n$ matrix \boldsymbol{A}, if the equality

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

holds for some $\boldsymbol{v} \neq \mathbf{0}$ and arbitrary scalar λ, then λ is an eigenvalue and \boldsymbol{v} is an eigenvector.

Eigenvalues and eigenvectors

Given a square $n \times n$ matrix \boldsymbol{A}, if the equality

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

holds for some $\boldsymbol{v} \neq \mathbf{0}$ and arbitrary scalar λ, then λ is an eigenvalue and \boldsymbol{v} is an eigenvector. Some recap:

- $\lambda=0$ is fine, $\boldsymbol{v}=\mathbf{0}$ is not.
- Eigenvectors are non-unique; in fact, the (infinite) set of eigenvectors associated to a fixed eigenvalue λ is a subspace, and is usually called an eigenspace.
- Eigenvalues can be computed as the roots of a degree- n polynomial via the characteristic equation.
- There are exactly n eigenvalues of \boldsymbol{A}, counting multiplicity.
- The dimension of an eigenspace for λ is at most the multiplicity of λ.

Linear independence of eigenvectors (1/2)

In many of the examples we've seen, eigenvectors associated to different eigenvalues are linearly independent.

Linear independence of eigenvectors (1/2)

In many of the examples we've seen, eigenvectors associated to different eigenvalues are linearly independent.
I.e., let λ and $\tilde{\lambda}$ be distinct eigenvalues of \boldsymbol{A}.

Suppose that \boldsymbol{v} and $\widetilde{\boldsymbol{v}}$ are eigenvectors for λ and $\widetilde{\lambda}$, respectively.
In many examples we've seen,

$$
c_{1} \boldsymbol{v}+c_{2} \tilde{\boldsymbol{v}}=\mathbf{0}
$$

is true only if $c_{1}=c_{2}=0$.

In many of the examples we've seen, eigenvectors associated to different eigenvalues are linearly independent.
I.e., let λ and $\tilde{\lambda}$ be distinct eigenvalues of \boldsymbol{A}.

Suppose that \boldsymbol{v} and $\widetilde{\boldsymbol{v}}$ are eigenvectors for λ and $\widetilde{\lambda}$, respectively.
In many examples we've seen,

$$
c_{1} \boldsymbol{v}+c_{2} \widetilde{\boldsymbol{v}}=\mathbf{0}
$$

is true only if $c_{1}=c_{2}=0$.
In fact, this is true generally:

Theorem

Suppose $\lambda_{1}, \ldots, \lambda_{k}$ are all distinct eigenvalues of \boldsymbol{A}, associated to eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$, respectively. Then $\left\{\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{k}\right\}$ are linearly independent.

Linear independence of eigenvectors (2/2)

Note: if \boldsymbol{A} has n distinct eigenvalues, then there are n linearly independent eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$.

In this case, we have:

$$
\boldsymbol{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, \cdots \boldsymbol{A} \boldsymbol{v}_{n}=\lambda_{1} \boldsymbol{v}_{n},
$$

Linear independence of eigenvectors (2/2)

Note: if \boldsymbol{A} has n distinct eigenvalues, then there are n linearly independent eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$.

In this case, we have:

$$
\boldsymbol{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, \cdots \boldsymbol{A} \boldsymbol{v}_{n}=\lambda_{1} \boldsymbol{v}_{n}
$$

which is equivalent to

$$
\boldsymbol{A}\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{n} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \boldsymbol{v}_{1} & \lambda_{2} \boldsymbol{v}_{2} & \lambda_{n} \boldsymbol{v}_{n} \\
\mid & \mid & \mid
\end{array}\right),
$$

Linear independence of eigenvectors (2/2)

Note: if \boldsymbol{A} has n distinct eigenvalues, then there are n linearly independent eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$.

In this case, we have:

$$
\boldsymbol{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, \cdots \boldsymbol{A} \boldsymbol{v}_{n}=\lambda_{1} \boldsymbol{v}_{n},
$$

which is equivalent to

$$
\boldsymbol{A}\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{n} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \boldsymbol{v}_{1} & \lambda_{2} \boldsymbol{v}_{2} & \lambda_{n} \boldsymbol{v}_{n} \\
\mid & \mid & \mid
\end{array}\right),
$$

which is equivalent to

$$
\boldsymbol{A}\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{n} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{n} \\
\mid & \mid & \mid
\end{array}\right),\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

Diagonalization

We have shown that if n linearly indpendent eigenvectors exist, we have

$$
\boldsymbol{A} \boldsymbol{V}=\boldsymbol{V} \boldsymbol{\Lambda},
$$

where

- \boldsymbol{V} is an $n \times n$ matrix whose columns are linearly independent eigenvectors
- $\boldsymbol{\Lambda}$ is an $n \times n$ diagonal matrix whose entries are eigenvalues of \boldsymbol{A}

Diagonalization

We have shown that if n linearly indpendent eigenvectors exist, we have

$$
\boldsymbol{A} \boldsymbol{V}=\boldsymbol{V} \boldsymbol{\Lambda},
$$

where

- \boldsymbol{V} is an $n \times n$ matrix whose columns are linearly independent eigenvectors
- $\boldsymbol{\Lambda}$ is an $n \times n$ diagonal matrix whose entries are eigenvalues of \boldsymbol{A}

We now use some linear algebra: if \boldsymbol{V} is square and has linearly independent columns, then it is invertible, i.e., \boldsymbol{V}^{-1} exists. Therefore, we have

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{-1} \tag{1}
\end{equation*}
$$

Diagonalization

We have shown that if n linearly indpendent eigenvectors exist, we have

$$
\boldsymbol{A} \boldsymbol{V}=\boldsymbol{V} \boldsymbol{\Lambda}
$$

where

- \boldsymbol{V} is an $n \times n$ matrix whose columns are linearly independent eigenvectors
- $\boldsymbol{\Lambda}$ is an $n \times n$ diagonal matrix whose entries are eigenvalues of \boldsymbol{A}

We now use some linear algebra: if \boldsymbol{V} is square and has linearly independent columns, then it is invertible, i.e., \boldsymbol{V}^{-1} exists. Therefore, we have

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{-1} \tag{1}
\end{equation*}
$$

If, given a matrix \boldsymbol{A}, there exists a diagonal matrix $\boldsymbol{\Lambda}$ and an invertible matrix \boldsymbol{V} such that the above is true, we say that \boldsymbol{A} is diagonalizable.

Given \boldsymbol{A}, we diagonalize \boldsymbol{A} by writing it in the form (1).

Examples (1/2)

Example (Example 6.2.1)

Diagonalize \boldsymbol{A}, or show that it is not diagonalizable.

$$
\boldsymbol{A}=\left(\begin{array}{ll}
5 & -6 \\
2 & -2
\end{array}\right)
$$

Examples (1/2)

Example (Example 6.2.1)

Diagonalize \boldsymbol{A}, or show that it is not diagonalizable.

$$
\boldsymbol{A}=\left(\begin{array}{ll}
5 & -6 \\
2 & -2
\end{array}\right)
$$

Example (Example 6.2.2)
Diagonalize \boldsymbol{A}, or show that it is not diagonalizable.

$$
\boldsymbol{A}=\left(\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right)
$$

Examples (2/2)

Example (Example 6.2.3)
Diagonalize \boldsymbol{A}, or show that it is not diagonalizable.

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-4 & 6 & 2 \\
16 & -15 & -5
\end{array}\right)
$$

Examples (2/2)

Example (Example 6.2.3)

Diagonalize \boldsymbol{A}, or show that it is not diagonalizable.

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
-4 & 6 & 2 \\
16 & -15 & -5
\end{array}\right)
$$

Example (Example 6.2.4)

Diagonalize \boldsymbol{A}, or show that it is not diagonalizable.

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
4 & -2 & 1 \\
2 & 0 & 1 \\
2 & -2 & 3
\end{array}\right)
$$

