L32-S00

Matrix diagonalization

MATH 2250 Lecture 32 Book section 6.2

November 19, 2019

Eigenvalues

Eigenvalues and eigenvectors

Given a square $n \times n$ matrix \boldsymbol{A} , if the equality

 $Av = \lambda v$,

holds for some $v \neq 0$ and arbitrary scalar λ , then λ is an **eigenvalue** and v is an **eigenvector**.

Eigenvalues and eigenvectors

Given a square $n \times n$ matrix \boldsymbol{A} , if the equality

 $Av = \lambda v$,

holds for some $v \neq 0$ and arbitrary scalar λ , then λ is an **eigenvalue** and v is an **eigenvector**. Some recap:

- $\lambda = 0$ is fine, v = 0 is not.
- Eigenvectors are non-unique; in fact, the (infinite) set of eigenvectors associated to a fixed eigenvalue λ is a subspace, and is usually called an eigenspace.
- Eigenvalues can be computed as the roots of a degree-*n* polynomial via the characteristic equation.
- There are *exactly* n eigenvalues of A, counting multiplicity.
- The dimension of an eigenspace for λ is <u>at most</u> the multiplicity of λ .

Linear independence of eigenvectors (1/2)

In many of the examples we've seen, eigenvectors associated to different eigenvalues are linearly independent.

Linear independence of eigenvectors (1/2)

In many of the examples we've seen, eigenvectors associated to different eigenvalues are linearly independent.

I.e., let λ and $\widetilde{\lambda}$ be *distinct* eigenvalues of \boldsymbol{A} . Suppose that \boldsymbol{v} and $\widetilde{\boldsymbol{v}}$ are eigenvectors for λ and $\widetilde{\lambda}$, respectively.

In many examples we've seen,

$$c_1 \boldsymbol{v} + c_2 \widetilde{\boldsymbol{v}} = \boldsymbol{0},$$

is true only if $c_1 = c_2 = 0$.

Linear independence of eigenvectors (1/2)

In many of the examples we've seen, eigenvectors associated to different eigenvalues are linearly independent.

I.e., let λ and $\widetilde{\lambda}$ be *distinct* eigenvalues of \boldsymbol{A} . Suppose that \boldsymbol{v} and $\widetilde{\boldsymbol{v}}$ are eigenvectors for λ and $\widetilde{\lambda}$, respectively.

In many examples we've seen,

$$c_1 \boldsymbol{v} + c_2 \widetilde{\boldsymbol{v}} = \boldsymbol{0},$$

is true only if $c_1 = c_2 = 0$.

In fact, this is true generally:

Theorem

Suppose $\lambda_1, \ldots, \lambda_k$ are all distinct eigenvalues of A, associated to eigenvectors v_1, \ldots, v_k , respectively. Then $\{v_1, \ldots, v_k\}$ are linearly independent.

132 - 502

Linear independence of eigenvectors (2/2)

Note: if A has n distinct eigenvalues, then there are n linearly independent eigenvectors v_1, \ldots, v_n .

In this case, we have:

$$Av_1 = \lambda_1 v_1, \cdots Av_n = \lambda_1 v_n,$$

Linear independence of eigenvectors (2/2)

Note: if A has n distinct eigenvalues, then there are n linearly independent eigenvectors v_1, \ldots, v_n .

In this case, we have:

$$Av_1 = \lambda_1 v_1, \cdots Av_n = \lambda_1 v_n,$$

which is equivalent to

$$\boldsymbol{A}\left(\begin{array}{ccc} | & | & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_n \\ | & | & | \end{array}\right) = \left(\begin{array}{ccc} | & | & | \\ \lambda_1 \boldsymbol{v}_1 & \lambda_2 \boldsymbol{v}_2 & \lambda_n \boldsymbol{v}_n \\ | & | & | \end{array}\right),$$

Linear independence of eigenvectors (2/2)

Note: if A has n distinct eigenvalues, then there are n linearly independent eigenvectors v_1, \ldots, v_n .

In this case, we have:

$$Av_1 = \lambda_1 v_1, \cdots Av_n = \lambda_1 v_n,$$

which is equivalent to

$$\boldsymbol{A}\left(\begin{array}{ccc} | & | & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_n \\ | & | & | \end{array}\right) = \left(\begin{array}{ccc} | & | & | \\ \lambda_1 \boldsymbol{v}_1 & \lambda_2 \boldsymbol{v}_2 & \lambda_n \boldsymbol{v}_n \\ | & | & | \end{array}\right),$$

which is equivalent to

$$\boldsymbol{A}\left(\begin{array}{cccc} | & | & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_n \\ | & | & | \end{array}\right) = \left(\begin{array}{cccc} | & | & | \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_n \\ | & | & | \end{array}\right), \left(\begin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array}\right),$$

Diagonalization

We have shown that if n linearly indpendent eigenvectors exist, we have

$$AV = V\Lambda$$
,

where

- V is an $n \times n$ matrix whose columns are linearly independent eigenvectors
- $oldsymbol{\Lambda}$ is an n imes n diagonal matrix whose entries are eigenvalues of $oldsymbol{A}$

Diagonalization

We have shown that if n linearly indpendent eigenvectors exist, we have

 $AV = V\Lambda$,

where

- V is an $n \times n$ matrix whose columns are linearly independent eigenvectors
- Λ is an $n \times n$ *d*iagonal matrix whose entries are eigenvalues of AWe now use some linear algebra: if V is square and has linearly independent columns, then it is invertible, i.e., V^{-1} exists. Therefore, we have

$$A = V\Lambda V^{-1}.$$
 (1)

Diagonalization

We have shown that if n linearly indpendent eigenvectors exist, we have

$$AV = V\Lambda$$
,

where

• V is an $n \times n$ matrix whose columns are linearly independent eigenvectors

• Λ is an $n \times n$ diagonal matrix whose entries are eigenvalues of AWe now use some linear algebra: if V is square and has linearly independent columns, then it is invertible, i.e., V^{-1} exists. Therefore, we have

$$A = V\Lambda V^{-1}.$$
 (1)

If, given a matrix A, there exists a diagonal matrix Λ and an invertible matrix V such that the above is true, we say that A is **diagonalizable**.

Given A, we **diagonalize** A by writing it in the form (1).

Examples (1/2)

L32-S05

Example (Example 6.2.1)

$$\boldsymbol{A} = \left(\begin{array}{cc} 5 & -6\\ 2 & -2 \end{array}\right)$$

Examples (1/2)

L32-S05

Example (Example 6.2.1)

Diagonalize A, or show that it is not diagonalizable.

$$\boldsymbol{A} = \left(\begin{array}{cc} 5 & -6\\ 2 & -2 \end{array}\right)$$

Example (Example 6.2.2)

$$\boldsymbol{A} = \left(\begin{array}{cc} 2 & 3\\ 0 & 2 \end{array}\right)$$

Examples (2/2)

Example (Example 6.2.3)

$$\boldsymbol{A} = \left(\begin{array}{rrrr} 3 & 0 & 0 \\ -4 & 6 & 2 \\ 16 & -15 & -5 \end{array}\right)$$

Examples (2/2)

Example (Example 6.2.3)

Diagonalize A, or show that it is not diagonalizable.

$$\boldsymbol{A} = \left(\begin{array}{rrrr} 3 & 0 & 0 \\ -4 & 6 & 2 \\ 16 & -15 & -5 \end{array}\right)$$

Example (Example 6.2.4)

$$\boldsymbol{A} = \left(\begin{array}{ccc} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{array} \right)$$