More Laplace transform manipulations

MATH 2250 Lecture 29
Book section 10.4

November 11, 2019

Laplace transforms

We have seen that solving differential equations can simplify to the task of computing the inverse Laplace transform of a function.

Computing inverse Laplace transforms is, in general, rather difficult.
Thus, it's important to have a good toolbox for computing inverse transforms.

Laplace transforms

We have seen that solving differential equations can simplify to the task of computing the inverse Laplace transform of a function.

Computing inverse Laplace transforms is, in general, rather difficult.
Thus, it's important to have a good toolbox for computing inverse transforms.
We've seen how to use

- linearity
- shift properties
- partial fractions
to aid in Laplace transform inversion.

Laplace transforms

We have seen that solving differential equations can simplify to the task of computing the inverse Laplace transform of a function.

Computing inverse Laplace transforms is, in general, rather difficult.
Thus, it's important to have a good toolbox for computing inverse transforms.
We've seen how to use

- linearity
- shift properties
- partial fractions
to aid in Laplace transform inversion.
Today, we'll investigate multiplication, differentiation, and integration of transforms.

Differentiation (1/2)

If $F(s)$ is the Laplace transform of $f(t)$, we can compute the inverse transform of $F^{\prime}(s)$.

Differentiation (1/2)

If $F(s)$ is the Laplace transform of $f(t)$, we can compute the inverse transform of $F^{\prime}(s)$.

$$
\begin{aligned}
F^{\prime}(s)=\frac{\mathrm{d}}{\mathrm{~d} s} F(s) & =\frac{\mathrm{d}}{\mathrm{~d} s} \int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} s}\left[f(t) e^{-s t}\right] \mathrm{d} t \\
& =\int_{0}^{\infty}-t f(t) e^{-s t} \mathrm{~d} t=\mathcal{L}\{-t f(t)\}
\end{aligned}
$$

Differentiation (1/2)

If $F(s)$ is the Laplace transform of $f(t)$, we can compute the inverse transform of $F^{\prime}(s)$.

$$
\begin{aligned}
F^{\prime}(s)=\frac{\mathrm{d}}{\mathrm{~d} s} F(s) & =\frac{\mathrm{d}}{\mathrm{~d} s} \int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} s}\left[f(t) e^{-s t}\right] \mathrm{d} t \\
& =\int_{0}^{\infty}-t f(t) e^{-s t} \mathrm{~d} t=\mathcal{L}\{-t f(t)\}
\end{aligned}
$$

Thus:

$$
F(s)=\mathcal{L}\{f(t)\} \quad \Longrightarrow \quad F^{\prime}(s)=\mathcal{L}\{-t f(t)\} .
$$

I.e., "differentiation in s corresponds to multiplication by $-t$ ".

Differentiation (2/2)

$$
F(s)=\mathcal{L}\{f(t)\} \quad \Longrightarrow \quad F^{\prime}(s)=\mathcal{L}\{-t f(t)\} .
$$

Example (Example 10.4.7)
Compute the inverse Laplace transform of $F(s)=\frac{2 s}{\left(s^{2}-1\right)^{2}}$.

Differentiation (2/2)

$$
F(s)=\mathcal{L}\{f(t)\} \quad \Longrightarrow \quad F^{\prime}(s)=\mathcal{L}\{-t f(t)\} .
$$

Example (Example 10.4.7)

Compute the inverse Laplace transform of $F(s)=\frac{2 s}{\left(s^{2}-1\right)^{2}}$.
Example (Example 10.4.4)
Compute the inverse Laplace transform of $F(s)=\arctan (1 / s)$

Differentiation (2/2)

$$
F(s)=\mathcal{L}\{f(t)\} \quad \Longrightarrow \quad F^{\prime}(s)=\mathcal{L}\{-t f(t)\} .
$$

Example (Example 10.4.7)

Compute the inverse Laplace transform of $F(s)=\frac{2 s}{\left(s^{2}-1\right)^{2}}$.
Example (Example 10.4.4)
Compute the inverse Laplace transform of $F(s)=\arctan (1 / s)$
Example (Example 10.4.3)
Compute the Laplace transform of $f(t)=t^{2} \sin (k t)$.

Multiplication of transforms (1/2)

We now investigate what it means to multiply two Laplace transforms. Let,

$$
F(s)=\mathcal{L}\{f(t)\}, \quad G(s)=\mathcal{L}\{g(t)\}
$$

What function $h(t)$ has Laplace transform $F(s) G(s)$?

Multiplication of transforms (1/2)
We now investigate what it means to multiply two Laplace transforms. Let,

$$
F(s)=\mathcal{L}\{f(t)\}, \quad G(s)=\mathcal{L}\{g(t)\}
$$

What function $h(t)$ has Laplace transform $F(s) G(s)$? We explicitly have:

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} f(\tau) e^{-s \tau} \mathrm{~d} \tau \int_{0}^{\infty} g(r) e^{-s r} \mathrm{~d} r \\
& =\int_{0}^{\infty} f(\tau) e^{-s \tau} \underbrace{\int_{0}^{\infty} g(r) e^{-s r} \mathrm{~d} r \mathrm{~d} \tau}_{r=t-\tau}, \\
& =\int_{0}^{\infty} f(\tau) e^{-s \tau} \int_{\tau}^{\infty} g(t-\tau) e^{-s(t-\tau)} \mathrm{d} t \mathrm{~d} \tau \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-s t} f(\tau) g(t-\tau) \mathrm{d} t \mathrm{~d} \tau
\end{aligned}
$$

Multiplication of transforms (2/2)

$$
\begin{aligned}
F(s)=\mathcal{L}\{f(t)\}, & G(s)=\mathcal{L}\{g(t)\} \\
F(s) G(s) & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-s t} f(\tau) g(t-\tau) \mathrm{d} t \mathrm{~d} \tau \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-s t} f(\tau) g(t-\tau) \mathrm{d} \tau \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{-s t} \int_{0}^{\infty} f(\tau) g(t-\tau) \mathrm{d} \tau \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{-s t} \underbrace{\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau}_{h(t)} \mathrm{d} t
\end{aligned}
$$

Thus, we have

$$
\mathcal{L}\{h(t)\}=F(s) G(s), \quad \quad h(t):=\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau .
$$

Convolutions

The operation defining $h(t)$ seems very strange, but it arises very often in engineering models.

Given $f(t)$ and $g(t)$, the convolution of f and g is defined as

$$
\begin{aligned}
(f * g)(t) & :=\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau \\
& =\int_{0}^{t} g(\tau) f(t-\tau) \mathrm{d} \tau
\end{aligned}
$$

Convolutions

The operation defining $h(t)$ seems very strange, but it arises very often in engineering models.

Given $f(t)$ and $g(t)$, the convolution of f and g is defined as

$$
\begin{aligned}
(f * g)(t) & :=\int_{0}^{t} f(\tau) g(t-\tau) \mathrm{d} \tau \\
& =\int_{0}^{t} g(\tau) f(t-\tau) \mathrm{d} \tau
\end{aligned}
$$

And so we have:

$$
\mathcal{L}\{(f * g)(t)\}=F(s) G(s),
$$

so that "multiplication in s is convolution in t ".

Examples

Example

Compute the convolution of $f(t)=\sin t$ and $g(t)=\cos t$.

Examples

Example

Compute the convolution of $f(t)=\sin t$ and $g(t)=\cos t$.

Example

Compute the inverse Laplace transform of $\frac{2}{s^{2}\left(s^{2}+4\right)}$.

Examples

Example

Compute the convolution of $f(t)=\sin t$ and $g(t)=\cos t$.

Example

Compute the inverse Laplace transform of $\frac{2}{s^{2}\left(s^{2}+4\right)}$.

Example

Write the solution to the DE

$$
x^{\prime \prime}+4 x=f(t), \quad x(0)=x^{\prime}(0)=0,
$$

as a convolution of f with another function.

