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Laplace transforms L26-S01

We are comfortable solving some second-order constant coefficient equations:
2”(t) + a1’ (t) + apz(t) = f(t),

but our success depends on the form of f(t).
For example, if f is discontinuous, we do not have a good way to solve this

equation.

The method of Laplace transforms is meant to address this deficiency.
First couple of lectures: understand the transform.
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Laplace transforms L26-S01

We are comfortable solving some second-order constant coefficient equations:
2”(t) + a1’ (t) + apz(t) = f(t),

but our success depends on the form of f(t).

For example, if f is discontinuous, we do not have a good way to solve this
equation.

The method of Laplace transforms is meant to address this deficiency.
First couple of lectures: understand the transform.

Given f(t) for t = 0, the Laplace transform of f is defined as

F(s) = (@)} = | e~ po)ar
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Examples L26-502

P = () = [ e s

The simplest way to understand this is to use it.

Example (Example 10.1.1)
Compute F(s) = L{f} for f(t) = 1.
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Examples L26-502

P = () = [ e s

The simplest way to understand this is to use it.

Example (Example 10.1.1)
Compute F(s) = L{f} for f(t) = 1.

Example (Example 10.1.2)
Compute F(s) = L{f} for f(t) = e for some (possibly complex!) scalar a.
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Examples L26-502

P = () = [ e s

The simplest way to understand this is to use it.

Example (Example 10.1.1)

Compute F(s) = L{f} for f(t) = 1.

Example (Example 10.1.2)

Compute F(s) = L{f} for f(t) = e for some (possibly complex!) scalar a.

Example (Example 10.1.2)
Compute F(s) = L{f} for f(t) = te*® for some (possibly complex!) scalar a.
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Laplace transforms and linearity (1/2) L.26-503

A property of Laplace transforms that we will use extensively is linearity.

The Laplace transform L is a linear operator, i.e.,

L) + 9@} = LU} + L{g(1)}
Licf(t)} = cL{f (D)},

where c is any (possibly complex) scalar.
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Laplace transforms and linearity (1/2) L.26-503

A property of Laplace transforms that we will use extensively is linearity.

The Laplace transform L is a linear operator, i.e.,

L) +9(B)} = L{F ()} + L{g(8)}
Licf(t)} = cL{f (D)},
where c is any (possibly complex) scalar.

Example
Compute F(s) = L{f} for f(t) = cosht.
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Laplace transforms and linearity (1/2) L.26-503

A property of Laplace transforms that we will use extensively is linearity.

The Laplace transform L is a linear operator, i.e.,
L) +9@)} = L{f(8)} + L{g(t)}
L{cf(t)} = cL{f (D)},
where c is any (possibly complex) scalar.
Example
Compute F(s) = L{f} for f(t) = cosht.

Example
Compute F(s) = L{f} for f(t) = cosat for a a real-valued scalar.
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Laplace transforms and linearity (2/2)

Example (Example 10.1.6)
Compute F(s) = L{f} for f(t) = 3e?' + 2sin?(3t).

L26-S04
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Inverse Laplace transforms L26-505

Laplace transforms have existence and uniqueness properties:

If f(t) is piecewise continuous and satisfies
lf(t)| < Me, forallt>T,

for some M and ¢, and T, then F(s) exists and is unique for all s > ¢.
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Inverse Laplace transforms L26-505

Laplace transforms have existence and uniqueness properties:

If f(t) is piecewise continuous and satisfies
lf(t)| < Me, forallt>T,
for some M and ¢, and T, then F(s) exists and is unique for all s > ¢.

This motivates introduction of the inverse Laplace transform: given F(s),
its inverse Laplace transform is

f(t) = LTHF(s)}

For our purposes: if F is the Laplace transform of f, then we call f the
inverse transform of F.
Like the (forward) Laplace transform, the inverese Laplace transform is linear.
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Inverse Laplace transforms L26-505

Laplace transforms have existence and uniqueness properties:

If f(t) is piecewise continuous and satisfies
lf(t)| < Me, forallt>T,

for some M and ¢, and T, then F(s) exists and is unique for all s > ¢.

This motivates introduction of the inverse Laplace transform: given F(s),
its inverse Laplace transform is

ft) = L7HF(s)}
For our purposes: if F is the Laplace transform of f, then we call f the

inverse transform of F.
Like the (forward) Laplace transform, the inverese Laplace transform is linear.

Example

Compute the inverse Laplace transform of F(s) = 1 and G(s) = g With
s> 0.
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