Nonhomogeneous equations: Underdetermined Coefficients

MATH 2250 Lecture 24
Book section 5.5

October 22, 2019

Nonhomogeneous equations

We've previously focused on computing solutions to constant coefficient linear homogeneous equations:

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=0,
$$

for constants a_{0}, \ldots, a_{n-1}. Our focus here is on the associated nonhomogeneous equation:

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=\mathbf{f}(\mathbf{x})
$$

Nonhomogeneous equations

We've previously focused on computing solutions to constant coefficient linear homogeneous equations:

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=0
$$

for constants a_{0}, \ldots, a_{n-1}. Our focus here is on the associated nonhomogeneous equation:

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=\mathbf{f}(\mathbf{x})
$$

Recall there are three steps to solving this DE:

1. Compute the general solution to the associated homogeneous equation.
2. Compute any particular solution.
3. Linearly combine the particular and homogeneous solutions.

Step 2 is the focus of this section.

Undetermined coefficients

In order to find a particular solution to

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=f(x)
$$

we use the method of undetermined coefficients.
This method essentially uses an educated guess to compute a solution.

Undetermined coefficients

In order to find a particular solution to

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=f(x)
$$

we use the method of undetermined coefficients.
This method essentially uses an educated guess to compute a solution.

Example (Example 7.5.1)

Find a particular solution of $y^{\prime \prime}+3 y^{\prime}+4 y=3 x+2$.

Undetermined coefficients

In order to find a particular solution to

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=f(x)
$$

we use the method of undetermined coefficients.
This method essentially uses an educated guess to compute a solution.

Example (Example 7.5.1)

Find a particular solution of $y^{\prime \prime}+3 y^{\prime}+4 y=3 x+2$.
Example (Example 7.5.2)
Find a particular solution of $y^{\prime \prime}-4 y=2 e^{3 x}$.

Undetermined coefficients

In order to find a particular solution to

$$
y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)}=f(x)
$$

we use the method of undetermined coefficients.
This method essentially uses an educated guess to compute a solution.

Example (Example 7.5.1)

Find a particular solution of $y^{\prime \prime}+3 y^{\prime}+4 y=3 x+2$.
Example (Example 7.5.2)
Find a particular solution of $y^{\prime \prime}-4 y=2 e^{3 x}$.

Example (Example 7.5.3)

Find a particular solution of $3 y^{\prime \prime}+y^{\prime}-2 y=2 \cos x$.

A possible complication

If the nonhomoegeneous function $f(x)$ coincides with the homogeneous solution, the previous strategies cannot be directly applied.

Example (Example 7.5.3)

Find a particular solution of $y^{\prime \prime}-y=\exp (x)$

A possible complication

If the nonhomoegeneous function $f(x)$ coincides with the homogeneous solution, the previous strategies cannot be directly applied.

Example (Example 7.5.3)

Find a particular solution of $y^{\prime \prime}-y=\exp (x)$

When (a component of) f coincides with the homogeneous solution, this is sometimes called duplication.
Thus, when duplication occurs, the remedy is to multiply by x, just as we did for repeated roots of the characteristic equation.

A possible complication

If the nonhomoegeneous function $f(x)$ coincides with the homogeneous solution, the previous strategies cannot be directly applied.

Example (Example 7.5.3)

Find a particular solution of $y^{\prime \prime}-y=\exp (x)$

When (a component of) f coincides with the homogeneous solution, this is sometimes called duplication.
Thus, when duplication occurs, the remedy is to multiply by x, just as we did for repeated roots of the characteristic equation.

The method of undetermined coefficients forms an ansatz for the particular solution by:

- including the terms in f including the terms in all derivatives of f
- eliminating duplication by multiplying by x^{s}, where s is the order of the characteristic equation root that causes duplication.

Examples

Example (Example 5.5.8)

Find a particular solution for $y^{(3)}+y^{\prime \prime}=3 e^{x}+4 x^{2}$.

Examples

Example (Example 5.5.8)

Find a particular solution for $y^{(3)}+y^{\prime \prime}=3 e^{x}+4 x^{2}$.

Example (Example 5.5.9)

Determine the appropriate form for a particular solution of

$$
y^{\prime \prime}+6 y^{\prime}+13 y=e^{-3 x} \cos (2 x)
$$

Examples

Example (Example 5.5.8)

Find a particular solution for $y^{(3)}+y^{\prime \prime}=3 e^{x}+4 x^{2}$.

Example (Example 5.5.9)

Determine the appropriate form for a particular solution of

$$
y^{\prime \prime}+6 y^{\prime}+13 y=e^{-3 x} \cos (2 x)
$$

Example (Example 5.5.6)

Solve the initial value problem:

$$
\begin{array}{r}
y^{\prime \prime}-3 y^{\prime}+2 y=3 e^{-x}-10 \cos 3 x \\
y(0)=1, \quad y^{\prime}(0)=2
\end{array}
$$

