Constant coefficient homogeneous equations

MATH 2250 Lecture 22
Book section 5.3

October 16, 2019

Constant coefficient homogeneous equations

In this section we consider computing the general solution to the DE

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are constants, and $a_{n} \neq 0$.

Constant coefficient homogeneous equations

In this section we consider computing the general solution to the DE

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are constants, and $a_{n} \neq 0$.
As before, the way forward is to use the ansatz

$$
y(x)=\exp (r x),
$$

with r an unknown constant, in the DE. This yields the characteristic equation,

$$
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{1} r+a_{0}=\sum_{j=0}^{n} a_{j} r^{j}=0
$$

which is a condition on possible values of r.

Distinct, real-valued roots

If the characteristic equation has distinct, real-valued roots, $r=r_{1}, r_{2}, \ldots, r_{n}$, then we can identify n linearly independent solutions:

$$
y_{1}(x)=\exp \left(r_{1} x\right), y_{2}(x)=\exp \left(r_{2} x\right), \cdots y_{n}(x)=\exp \left(r_{n} x\right)
$$

Therefore, in this case of distinct, real roots, the general solution to the DE is

$$
Y(x)=\sum_{j=1}^{n} c_{j} y_{j}(x)
$$

Distinct, real-valued roots

If the characteristic equation has distinct, real-valued roots, $r=r_{1}, r_{2}, \ldots, r_{n}$, then we can identify n linearly independent solutions:

$$
y_{1}(x)=\exp \left(r_{1} x\right), y_{2}(x)=\exp \left(r_{2} x\right), \cdots y_{n}(x)=\exp \left(r_{n} x\right)
$$

Therefore, in this case of distinct, real roots, the general solution to the DE is

$$
Y(x)=\sum_{j=1}^{n} c_{j} y_{j}(x)
$$

Example (Example 5.3.1)

Solve the initial value problem

$$
\begin{array}{r}
y^{(3)}+3 y^{\prime \prime}-10 y^{\prime}=0, \\
y(0)=7, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=70
\end{array}
$$

Real, repeated roots

The case of real, repeated roots is more delicate. To simplify the situation, suppose we have a DE

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

whose characteristic equation

$$
\sum_{j=0}^{n} a_{j} r^{j}=0
$$

has $k>1$ repeated real roots at r_{0}. I.e., it can be written as

$$
\left(r-r_{0}\right)^{k} \prod_{j=1}^{n-k}\left(r-r_{j}\right)=0
$$

where $r_{1}, r_{2}, \ldots, r_{n-k}$ are distinct. The focus is on the repated root r_{0}.

Real, repeated roots

The case of real, repeated roots is more delicate. To simplify the situation, suppose we have a DE

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

whose characteristic equation

$$
\sum_{j=0}^{n} a_{j} r^{j}=0
$$

has $k>1$ repeated real roots at r_{0}. I.e., it can be written as

$$
\left(r-r_{0}\right)^{k} \prod_{j=1}^{n-k}\left(r-r_{j}\right)=0
$$

where $r_{1}, r_{2}, \ldots, r_{n-k}$ are distinct. The focus is on the repated root r_{0}.
Can we find k linearly independent solutions from the repeated root? Clearly one solution is

$$
u(x)=\exp \left(r_{0} x\right)
$$

but we need $k-1$ more solutions.

Variation of parameters (1/3)

The strategy to compute the remaining solutions appeals to a technique called variation of parameters.

First note that the distinct roots are distractions. I.e., we can focus on finding solutions for a simpler characteristic equation and its associated DE:

$$
\left(r-r_{0}\right)^{k}=0 \Leftrightarrow\left[\frac{\mathrm{~d}}{\mathrm{~d} x}-r_{0}\right]^{k} y=0
$$

Variation of parameters (1/3)

The strategy to compute the remaining solutions appeals to a technique called variation of parameters.

First note that the distinct roots are distractions. I.e., we can focus on finding solutions for a simpler characteristic equation and its associated DE:

$$
\left(r-r_{0}\right)^{k}=0 \Leftrightarrow\left[\frac{\mathrm{~d}}{\mathrm{~d} x}-r_{0}\right]^{k} y=0
$$

The idea is as follows: we know that $u(x)=c \exp \left(r_{0} x\right)$ solves the DE for a constant c.

A reasonable guess then, is that perhaps

$$
w(x)=p(x) \exp \left(r_{0} x\right)
$$

for some unknown function $p(x)$, will solve the equation. What should p satisfy?

Variation of parameters (2/3)

Note that

$$
\begin{aligned}
{\left[\frac{\mathrm{d}}{\mathrm{~d} x}-r_{0}\right] w(x) } & =p^{\prime}(x) \exp \left(r_{0} x\right)+r_{0} p(x) \exp \left(r_{0} x\right)-r_{0} p(x) \exp \left(r_{0} x\right) \\
& =p^{\prime}(x) \exp \left(r_{0} x\right)
\end{aligned}
$$

By repeatedly applying this differential operator, then the DE states:

$$
\left[\frac{\mathrm{d}}{\mathrm{~d} x}-r_{0}\right]^{k} w(x)=p^{(k)}(x) \exp \left(r_{0} x\right)=0
$$

Variation of parameters (2/3)

Note that

$$
\begin{aligned}
{\left[\frac{\mathrm{d}}{\mathrm{~d} x}-r_{0}\right] w(x) } & =p^{\prime}(x) \exp \left(r_{0} x\right)+r_{0} p(x) \exp \left(r_{0} x\right)-r_{0} p(x) \exp \left(r_{0} x\right) \\
& =p^{\prime}(x) \exp \left(r_{0} x\right)
\end{aligned}
$$

By repeatedly applying this differential operator, then the DE states:

$$
\left[\frac{\mathrm{d}}{\mathrm{~d} x}-r_{0}\right]^{k} w(x)=p^{(k)}(x) \exp \left(r_{0} x\right)=0
$$

This implies

$$
p^{(k)}(x)=0 \Longrightarrow p(x)=c_{0}+c_{1} x+\cdots+c_{k-1} x^{k-1}=\sum_{j=0}^{k-1} c_{j} x^{j}
$$

so that $w(x)=p(x) \exp \left(r_{0} x\right)$ now identifies k linearly independent functions.

Variation of parameters (3/3)

In summary, if the characteristic equation for a DE has k repeated roots with $r=r_{0}$, then the k linearly indpendent solutions associated with this root are:

$$
\begin{aligned}
y_{1}(x) & =\exp \left(r_{0} x\right) \\
y_{2}(x) & =x \exp \left(r_{0} x\right) \\
y_{3}(x) & =x^{2} \exp \left(r_{0} x\right) \\
\cdots & \\
y_{k}(x) & =x^{k-1} \exp \left(r_{0} x\right)
\end{aligned}
$$

Variation of parameters (3/3)

In summary, if the characteristic equation for a DE has k repeated roots with $r=r_{0}$, then the k linearly indpendent solutions associated with this root are:

$$
\begin{aligned}
y_{1}(x) & =\exp \left(r_{0} x\right) \\
y_{2}(x) & =x \exp \left(r_{0} x\right) \\
y_{3}(x) & =x^{2} \exp \left(r_{0} x\right) \\
\ldots & \\
y_{k}(x) & =x^{k-1} \exp \left(r_{0} x\right)
\end{aligned}
$$

Example (Example 5.3.2)

Compute the general solution to the DE

$$
9 y^{(5)}-6 y^{(r)}+y^{(3)}=0 .
$$

Complex valued roots

Recall that if an algebraic equation

$$
\sum_{j=0}^{n} a_{j} r^{j}=0
$$

with real-valued coefficients a_{j} has a complex root, then its complex conjugate is also a root.
I.e., any complex-valued roots r come in conjugate pairs for real-valued algebraic equations:

$$
r=\sigma \pm i \omega, \quad i:=\sqrt{-1} .
$$

where σ and ω are real numbers.

Complex valued roots

Recall that if an algebraic equation

$$
\sum_{j=0}^{n} a_{j} r^{j}=0
$$

with real-valued coefficients a_{j} has a complex root, then its complex conjugate is also a root.
I.e., any complex-valued roots r come in conjugate pairs for real-valued algebraic equations:

$$
r=\sigma \pm i \omega, \quad i:=\sqrt{-1} .
$$

where σ and ω are real numbers. Before proceeding, we review some basic facts about complex arithmetic: with x and y real numbers:

$$
z=x+i y, \quad|z|=\sqrt{x^{2}+y^{2}}
$$

Complex valued roots

A fundamental tool is Euler's identity:

$$
\exp (i \theta)=\cos \theta+i \sin \theta
$$

and so all complex number have a polar form:

$$
z=x+i y=r \exp (i \theta)
$$

where $r=|z|$ and $\theta=\arctan (y / x)$.

Complex valued roots

A fundamental tool is Euler's identity:

$$
\exp (i \theta)=\cos \theta+i \sin \theta
$$

and so all complex number have a polar form:

$$
z=x+i y=r \exp (i \theta)
$$

where $r=|z|$ and $\theta=\arctan (y / x)$.
Complex-valued roots are not a problem, in principle: if $r=\sigma \pm i \omega$ are conjugate roots of the characteristic equation, then

$$
y_{1}(x)=\exp ((\sigma+i \omega) x), \quad y_{2}(x)=\exp ((\sigma-i \omega) x)
$$

are two linearly independent solutions to the DE. (Check their linear independence!)

Complex valued roots

A fundamental tool is Euler's identity:

$$
\exp (i \theta)=\cos \theta+i \sin \theta
$$

and so all complex number have a polar form:

$$
z=x+i y=r \exp (i \theta)
$$

where $r=|z|$ and $\theta=\arctan (y / x)$.
Complex-valued roots are not a problem, in principle: if $r=\sigma \pm i \omega$ are conjugate roots of the characteristic equation, then

$$
y_{1}(x)=\exp ((\sigma+i \omega) x), \quad y_{2}(x)=\exp ((\sigma-i \omega) x)
$$

are two linearly independent solutions to the DE. (Check their linear independence!)

Example

Compute the general solution to $y^{\prime \prime}+y=0$.

Trigonometric solutions

While complex-valued solutions to DE's are in principle fine, they are difficult to physically interpret if the DE models a real-valued system.

Trigonometric solutions

While complex-valued solutions to DE's are in principle fine, they are difficult to physically interpret if the DE models a real-valued system.

Euler's identity can help rewrite complex exponentials in real-valued form: if two characteristic equation roots are $\sigma \pm i \omega$, then a linear combination of them can be rearranged:

$$
\begin{array}{r}
c_{1} \exp ((\sigma+i \omega) x)+c_{2} \exp ((\sigma-i \omega) x)= \\
\left(c_{1}+c_{2}\right) \exp (\sigma x) \cos (\omega x)+i\left(c_{1}-c_{2}\right) \exp (\sigma x) \sin (\omega x)= \\
c_{3} \exp (\sigma x) \cos (\omega x)+c_{4} \exp (\sigma x) \sin (\omega x)
\end{array}
$$

Trigonometric solutions

While complex-valued solutions to DE's are in principle fine, they are difficult to physically interpret if the DE models a real-valued system.

Euler's identity can help rewrite complex exponentials in real-valued form: if two characteristic equation roots are $\sigma \pm i \omega$, then a linear combination of them can be rearranged:

$$
\begin{array}{r}
c_{1} \exp ((\sigma+i \omega) x)+c_{2} \exp ((\sigma-i \omega) x)= \\
\left(c_{1}+c_{2}\right) \exp (\sigma x) \cos (\omega x)+i\left(c_{1}-c_{2}\right) \exp (\sigma x) \sin (\omega x)= \\
c_{3} \exp (\sigma x) \cos (\omega x)+c_{4} \exp (\sigma x) \sin (\omega x)
\end{array}
$$

Thus, the real part of the root becomes the exopnential coefficient, and the imaginary part becomes the frequency of trigonometric functions.

Roots of the characteristic equation

In summary:

- For real-valued distinct roots r_{j}, then $y_{j}=\exp \left(r_{j} x\right)$.
- For a k-fold repeated real-valued root r_{0}, then
$y_{1}=\exp \left(r_{0} x\right), \ldots, y_{k}=x^{k-1} \exp \left(r_{0} x\right)$.
- For a complex conjugate root pair $r=\sigma \pm i \omega$, then $y_{1}(x)=\exp (\sigma x) \cos (\omega x)$ and $y_{2}(x)=\exp (\sigma x) \sin (\omega x)$.

Roots of the characteristic equation

In summary:

- For real-valued distinct roots r_{j}, then $y_{j}=\exp \left(r_{j} x\right)$.
- For a k-fold repeated real-valued root r_{0}, then
$y_{1}=\exp \left(r_{0} x\right), \ldots, y_{k}=x^{k-1} \exp \left(r_{0} x\right)$.
- For a complex conjugate root pair $r=\sigma \pm i \omega$, then

$$
y_{1}(x)=\exp (\sigma x) \cos (\omega x) \text { and } y_{2}(x)=\exp (\sigma x) \sin (\omega x) .
$$

Example (Example 5.3.4)
Find the particular solution of $y^{\prime \prime}-4 y^{\prime}+5 y=0$, for which $y(0)=1$ and $y^{\prime}(0)=5$.

Roots of the characteristic equation

In summary:

- For real-valued distinct roots r_{j}, then $y_{j}=\exp \left(r_{j} x\right)$.
- For a k-fold repeated real-valued root r_{0}, then

$$
y_{1}=\exp \left(r_{0} x\right), \ldots, y_{k}=x^{k-1} \exp \left(r_{0} x\right) .
$$

- For a complex conjugate root pair $r=\sigma \pm i \omega$, then

$$
y_{1}(x)=\exp (\sigma x) \cos (\omega x) \text { and } y_{2}(x)=\exp (\sigma x) \sin (\omega x) \text {. }
$$

Example (Example 5.3.4)
Find the particular solution of $y^{\prime \prime}-4 y^{\prime}+5 y=0$, for which $y(0)=1$ and $y^{\prime}(0)=5$.

Example (Example 5.3.5)
Compute the general solution of $y^{(4)}+4 y=0$.

