Higher order linear equations

MATH 2250 Lecture 21
Book section 5.2

October 15, 2019

nth order linear DE's

The last lecture considered several properties of second order linear DE's: superposition, existence and uniqueness, linear independence, Wronskians, characteristic equations.

There is nothing special about second order equations: All of these concepts carry over to general nth order linear DE's.

nth order linear DE's

The last lecture considered several properties of second order linear DE's: superposition, existence and uniqueness, linear independence, Wronskians, characteristic equations.

There is nothing special about second order equations: All of these concepts carry over to general nth order linear DE's.

A general nth order linear DE has the form

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+p_{2}(x) y^{(n-2)}+\cdots+p_{n}(x) y=f(x)
$$

It is homogeneous if $f(x) \equiv 0$, otherwise it is nonhomogeneous.

nth order linear DE's

The last lecture considered several properties of second order linear DE's: superposition, existence and uniqueness, linear independence, Wronskians, characteristic equations.

There is nothing special about second order equations: All of these concepts carry over to general nth order linear DE's.

A general nth order linear DE has the form

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+p_{2}(x) y^{(n-2)}+\cdots+p_{n}(x) y=f(x)
$$

It is homogeneous if $f(x) \equiv 0$, otherwise it is nonhomogeneous.
Linear DE's obey the principle of superposition: if $y_{1}, \ldots y_{n}$ are all solutions to homogeneous version of the linear DE above,

$$
c_{1} y_{1}(x)+\cdots+c_{n} y_{n}(x)=\sum_{j=1}^{n} c_{j} y_{j}(x)
$$

is also a solution to the DE.

Existence, uniqueness, independence
If $p_{1}, \ldots p_{n}$, and f are all continuous functions on the open interval I containing the point a, then the initial value problem

$$
\begin{array}{r}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x) \\
y(a)=b_{0}, y^{\prime}(a)=b_{1}, \cdots y^{(n-1)}(a)=b_{n-1}
\end{array}
$$

has a unique solution for any constants $b_{0}, b_{1}, \ldots, b_{n-1}$.

Existence, uniqueness, independence
If $p_{1}, \ldots p_{n}$, and f are all continuous functions on the open interval I containing the point a, then the initial value problem

$$
\begin{array}{r}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x) \\
y(a)=b_{0}, y^{\prime}(a)=b_{1}, \cdots y^{(n-1)}(a)=b_{n-1}
\end{array}
$$

has a unique solution for any constants $b_{0}, b_{1}, \ldots, b_{n-1}$.
A set of functions $\left\{y_{1}, \ldots y_{n}\right\}$ are linearly independent on the interval I if the condition

$$
\sum_{j=1}^{n} c_{j} y_{j}(x)=0, \quad \text { for all } x \text { in } I
$$

is true only when $c_{1}=c_{2}=\cdots=c_{n}=0$. Otherwise they are lienarly dependent.

Existence, uniqueness, independence
If $p_{1}, \ldots p_{n}$, and f are all continuous functions on the open interval I containing the point a, then the initial value problem

$$
\begin{array}{r}
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x) \\
y(a)=b_{0}, y^{\prime}(a)=b_{1}, \cdots y^{(n-1)}(a)=b_{n-1}
\end{array}
$$

has a unique solution for any constants $b_{0}, b_{1}, \ldots, b_{n-1}$.
A set of functions $\left\{y_{1}, \ldots y_{n}\right\}$ are linearly independent on the interval I if the condition

$$
\sum_{j=1}^{n} c_{j} y_{j}(x)=0, \quad \text { for all } x \text { in } I
$$

is true only when $c_{1}=c_{2}=\cdots=c_{n}=0$. Otherwise they are lienarly dependent.

Determine whether $f_{1}(x)=\exp (x), f_{2}(x)=\cosh (x)$, and $f_{3}(x)=\exp (-x)$ are linearly independent or dependent.

Wronskians

Linear independence of solutions ensures that we can solve initial value problems uniquely.
A linear algebraic way of characterizing this is with Wronskians.
Given n functions $f_{1}, f_{2}, \ldots, f_{n}$, their Wronskian determinant is the function

$$
W\left(f_{1}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

Wronskians
Linear independence of solutions ensures that we can solve initial value problems uniquely.
A linear algebraic way of characterizing this is with Wronskians.
Given n functions $f_{1}, f_{2}, \ldots, f_{n}$, their Wronskian determinant is the function

$$
W\left(f_{1}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

Example (Problem 5.2.9)

Use the Wronskian to show that the following functions are linearly independent on \mathbb{R} :

$$
f_{1}(x)=\exp (x), \quad f_{2}(x)=\sin (x), \quad f_{3}(x)=\cos (x)
$$

These functions are solutions to the DE $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$. Compute the particular solution satisfying the initial data $y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=0$.

Wronskians and general solutions

Wronskians are a test for when we have a general solution.
Assume that p_{1}, \ldots, p_{n} are all continuous functions on an open interval I, and consider the DE

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=0
$$

Let y_{1}, \ldots, y_{n} be solutions to this DE. Tnen

- y_{1}, \ldots, y_{n} are linearly dependent if and only if $W\left(y_{1}, \ldots, y_{n}\right)(x)=0$ for each x in I.
- y_{1}, \ldots, y_{n} are linearly independent if and only if $W\left(y_{1}, \ldots, y_{n}\right)(x) \neq 0$ for each x in I.

Wronskians and general solutions

Wronskians are a test for when we have a general solution.
Assume that p_{1}, \ldots, p_{n} are all continuous functions on an open interval I, and consider the DE

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=0
$$

Let y_{1}, \ldots, y_{n} be solutions to this DE. Tnen

- y_{1}, \ldots, y_{n} are linearly dependent if and only if $W\left(y_{1}, \ldots, y_{n}\right)(x)=0$ for each x in I.
- y_{1}, \ldots, y_{n} are linearly independent if and only if $W\left(y_{1}, \ldots, y_{n}\right)(x) \neq 0$ for each x in I.
In the latter case, any solution $Y(x)$ to the DE has the form

$$
Y(x)=\sum_{j=1}^{n} c_{j} y_{j}(x)
$$

and hence Y represents the general solution.
The solution space for this DE is a vector space, $\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}$ with basis $\left\{y_{1}, \ldots y_{n}\right\}$ and has dimension n.

Nonhomogenous equations

Linearity allows us to solve nonhomogeneous equations if we know one solution: consider a general solution $Y(x)$ to the DE

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x)
$$

Suppose we know any particular solution $y_{p}(x)$ to the DE above.
I.e., both Y and y_{p} satisfy the DE.

Nonhomogenous equations

Linearity allows us to solve nonhomogeneous equations if we know one solution: consider a general solution $Y(x)$ to the DE

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x)
$$

Suppose we know any particular solution $y_{p}(x)$ to the DE above.
I.e., both Y and y_{p} satisfy the DE.

Then the function $y_{c}(x):=Y(x)-y_{p}(x)$ satisfies the DE

$$
y_{c}^{(n)}+p_{1}(x) y_{c}^{(n-1)}+\cdots+p_{n}(x) y_{c}=0,
$$

I.e., y_{c} satsifies the associated homogeneous DE. (y_{c} is sometimes called the complementary solution.)

Nonhomogenous equations

Linearity allows us to solve nonhomogeneous equations if we know one solution: consider a general solution $Y(x)$ to the DE

$$
y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x) .
$$

Suppose we know any particular solution $y_{p}(x)$ to the DE above.
I.e., both Y and y_{p} satisfy the DE.

Then the function $y_{c}(x):=Y(x)-y_{p}(x)$ satisfies the DE

$$
y_{c}^{(n)}+p_{1}(x) y_{c}^{(n-1)}+\cdots+p_{n}(x) y_{c}=0
$$

I.e., y_{c} satsifies the associated homogeneous DE. (y_{c} is sometimes called the complementary solution.)

This identification yields the following result: the general solution $Y(x)$ to the nonhomogeneous DE can be written as

$$
Y(x)=y_{p}(x)+y_{c}(x),
$$

where y_{p} is any solution, and y_{c} is the general solution to the associated homogeneous DE.

Nonhomogenous equations

Example (Example 5.2.7)

Verify that $y_{p}(x)=3 x$ is a solution to

$$
y^{\prime \prime}+4 y=12 x
$$

and that $y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$ is the general solution to the associated homogeneous DE. Find a solution that satisfies $y(0)=5, y^{\prime}(0)=7$.

