L21-S00

Higher order linear equations

MATH 2250 Lecture 21 Book section 5.2

October 15, 2019

*n*th order linear DE's

The last lecture considered several properties of second order linear DE's: superposition, existence and uniqueness, linear independence, Wronskians, characteristic equations.

There is nothing special about <u>second</u> order equations: All of these concepts carry over to general nth order linear DE's.

*n*th order linear DE's

The last lecture considered several properties of second order linear DE's: superposition, existence and uniqueness, linear independence, Wronskians, characteristic equations.

There is nothing special about <u>second</u> order equations: All of these concepts carry over to general nth order linear DE's.

A general nth order **linear** DE has the form

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_n(x)y = f(x)$$

It is homogeneous if $f(x) \equiv 0$, otherwise it is nonhomogeneous.

*n*th order linear DE's

The last lecture considered several properties of second order linear DE's: superposition, existence and uniqueness, linear independence, Wronskians, characteristic equations.

There is nothing special about <u>second</u> order equations: All of these concepts carry over to general nth order linear DE's.

A general nth order **linear** DE has the form

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_n(x)y = f(x)$$

It is homogeneous if $f(x) \equiv 0$, otherwise it is nonhomogeneous.

Linear DE's obey the principle of **superposition**: if y_1, \ldots, y_n are all solutions to homogeneous version of the linear DE above,

$$c_1y_1(x) + \dots + c_ny_n(x) = \sum_{j=1}^n c_jy_j(x),$$

is also a solution to the DE.

Existence, uniqueness, independence

If $p_1, \ldots p_n$, and f are all continuous functions on the open interval I containing the point a, then the initial value problem

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x),$$

$$y(a) = b_0, \ y'(a) = b_1, \ \dots \ y^{(n-1)}(a) = b_{n-1},$$

has a unique solution for any constants $b_0, b_1, \ldots, b_{n-1}$.

Existence, uniqueness, independence

If $p_1, \ldots p_n$, and f are all continuous functions on the open interval I containing the point a, then the initial value problem

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x),$$

$$y(a) = b_0, \ y'(a) = b_1, \ \dots \ y^{(n-1)}(a) = b_{n-1},$$

has a unique solution for <u>any</u> constants $b_0, b_1, \ldots, b_{n-1}$.

A set of functions $\{y_1,\ldots y_n\}$ are **linearly independent** on the interval I if the condition

$$\sum_{j=1}^{n} c_j y_j(x) = 0, \quad \text{for all } x \text{ in } I$$

is true only when $c_1 = c_2 = \cdots = c_n = 0$. Otherwise they are **lienarly** dependent.

Existence, uniqueness, independence

If $p_1, \ldots p_n$, and f are all continuous functions on the open interval I containing the point a, then the initial value problem

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x),$$

$$y(a) = b_0, \ y'(a) = b_1, \ \dots \ y^{(n-1)}(a) = b_{n-1},$$

has a unique solution for <u>any</u> constants $b_0, b_1, \ldots, b_{n-1}$.

A set of functions $\{y_1, \ldots y_n\}$ are **linearly independent** on the interval I if the condition

$$\sum_{j=1}^{n} c_j y_j(x) = 0, \quad \text{for all } x \text{ in } I$$

is true only when $c_1 = c_2 = \cdots = c_n = 0$. Otherwise they are **lienarly** dependent.

Determine whether $f_1(x) = \exp(x)$, $f_2(x) = \cosh(x)$, and $f_3(x) = \exp(-x)$ are linearly independent or dependent.

Wronskians

Linear independence of solutions ensures that we can solve initial value problems uniquely.

A linear algebraic way of characterizing this is with Wronskians.

Given n functions f_1, f_2, \ldots, f_n , their **Wronskian** determinant is the function

$$W(f_1, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

independent on \mathbb{R} :

$$f_1(x) = \exp(x),$$
 $f_2(x) = \sin(x),$ $f_3(x) = \cos(x)$

Use the Wronskian to show that the following functions are linearly

These functions are solutions to the DE y''' - y'' + y' - y = 0. Compute the particular solution satisfying the initial data y(0) = 1, y'(0) = 2, y''(0) = 0.

Example (Problem 5.2.9)

Wronskians

Linear independence of solutions ensures that we can solve initial value problems uniquely.

A linear algebraic way of characterizing this is with Wronskians.

Given n functions f_1, f_2, \ldots, f_n , their Wronskian determinant is the function

$$W(f_1, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

Wronskians and general solutions

Wronskians are a test for when we have a general solution.

Assume that p_1,\ldots,p_n are all continuous functions on an open interval I, and consider the DE

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = 0,$$

Let y_1, \ldots, y_n be solutions to this DE. Then

- y_1, \ldots, y_n are linearly dependent if and only if $W(y_1, \ldots, y_n)(x) = 0$ for each x in I.
- y_1, \ldots, y_n are linearly independent if and only if $W(y_1, \ldots, y_n)(x) \neq 0$ for each x in I.

Wronskians and general solutions

Wronskians are a test for when we have a general solution.

Assume that p_1,\ldots,p_n are all continuous functions on an open interval I, and consider the DE

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = 0,$$

Let y_1, \ldots, y_n be solutions to this DE. Then

- y_1, \ldots, y_n are linearly dependent if and only if $W(y_1, \ldots, y_n)(x) = 0$ for each x in I.
- y_1, \ldots, y_n are linearly independent if and only if $W(y_1, \ldots, y_n)(x) \neq 0$ for each x in I.

In the latter case, any solution Y(x) to the DE has the form

$$Y(x) = \sum_{j=1}^{n} c_j y_j(x),$$

and hence Y represents the **general solution**.

The solution space for this DE is a vector space, $span\{y_1, \ldots, y_n\}$ with basis $\{y_1, \ldots, y_n\}$ and has dimension n.

Nonhomogenous equations

Linearity allows us to solve nonhomogeneous equations if we know one solution: consider a general solution $Y(\boldsymbol{x})$ to the DE

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x).$$

Suppose we know any **particular** solution $y_p(x)$ to the DE above. I.e., both Y and y_p satisfy the DE.

L21-S05

Nonhomogenous equations

Linearity allows us to solve nonhomogeneous equations if we know one solution: consider a general solution $Y(\boldsymbol{x})$ to the DE

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x).$$

Suppose we know any **particular** solution $y_p(x)$ to the DE above. I.e., both Y and y_p satisfy the DE.

Then the function $y_c(x) \coloneqq Y(x) - y_p(x)$ satisfies the DE

$$y_c^{(n)} + p_1(x)y_c^{(n-1)} + \dots + p_n(x)y_c = 0,$$

I.e., y_c satsifies the associated *homogeneous* DE. (y_c is sometimes called the *complementary* solution.)

L21-S05

Nonhomogenous equations

Linearity allows us to solve nonhomogeneous equations if we know one solution: consider a general solution $Y(\boldsymbol{x})$ to the DE

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_n(x)y = f(x).$$

Suppose we know any **particular** solution $y_p(x)$ to the DE above.

I.e., both Y and y_p satisfy the DE.

Then the function $y_c(x)\coloneqq Y(x)-y_p(x)$ satisfies the DE

$$y_c^{(n)} + p_1(x)y_c^{(n-1)} + \dots + p_n(x)y_c = 0,$$

I.e., y_c satsifies the associated *homogeneous* DE. (y_c is sometimes called the *complementary* solution.)

This identification yields the following result: the general solution Y(x) to the nonhomogeneous DE can be written as

$$Y(x) = y_p(x) + y_c(x),$$

where y_p is any solution, and y_c is the general solution to the associated homogeneous DE.

MATH 2250-004 - U. Utah

Example (Example 5.2.7)

Verify that $y_p(x) = 3x$ is a solution to

$$y'' + 4y = 12x,$$

and that $y_c(x) = c_1 \cos 2x + c_2 \sin 2x$ is the general solution to the associated homogeneous DE. Find a solution that satisfies y(0) = 5, y'(0) = 7.