The vector space \mathbb{R}^{3}

MATH 2250 Lecture 16
Book section 4.1

September 24, 2019

Vectors in \mathbb{R}^{3}

Every point in \mathbb{R}^{3} is represented by a 3×1 vector containing the point's coordinates.
Vector representations have both a magnitude and a direction. They are not just locations.
In this section, we will write all vectors as row vectors. This is just for notational simplicity. (Nothing changes if we use column vectors instead.)
Vectors are typically drawn as arrows: the tail is located at the origin and the head is located at the point.

Vectors in \mathbb{R}^{3}

Many vector operations act just like elementwise matrix operations: if \boldsymbol{u} and \boldsymbol{v} are vectors and c is a scalar, then

$$
c \boldsymbol{u}=\left(\begin{array}{ccc}
c u_{1} & c u_{2} & c u_{3}
\end{array}\right), \quad \boldsymbol{u}+\boldsymbol{v}=\left(\begin{array}{ccc}
u_{1}+v_{1} & u_{2}+v_{2} & u_{3}+v_{3}
\end{array}\right)
$$

One more property is that of length:

$$
|\boldsymbol{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
$$

Many vector operations act just like elementwise matrix operations: if \boldsymbol{u} and \boldsymbol{v} are vectors and c is a scalar, then

$$
c \boldsymbol{u}=\left(\begin{array}{ccc}
c u_{1} & c u_{2} & c u_{3}
\end{array}\right), \quad \boldsymbol{u}+\boldsymbol{v}=\left(\begin{array}{ccc}
u_{1}+v_{1} & u_{2}+v_{2} & u_{3}+v_{3}
\end{array}\right)
$$

One more property is that of length:

$$
|\boldsymbol{u}|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}
$$

The first two properties are simple, but important: if a collection of objects V has notions of addition and scalar multipliction above that result in outputs that are also in V, then V is called a vector space.

\mathbb{R}^{3} is a vector space

The set of points \mathbb{R}^{3} is a vector space:
If $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are vectors in \mathbb{R}^{3} and r and s are any scalars, then:

- $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
- $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}$
- $\boldsymbol{u}+\mathbf{0}=\mathbf{0}+\boldsymbol{u}=\boldsymbol{u}(\mathbf{0}$ a vector with all entries 0$)$
- $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$
- $r(\boldsymbol{u}+\boldsymbol{v})=r \boldsymbol{u}+r \boldsymbol{v}$
- $(r+s) \boldsymbol{u}=r \boldsymbol{u}+s \boldsymbol{u}$
- $r(s \boldsymbol{u})=(r s) \boldsymbol{u}$
- $1 \boldsymbol{u}=\boldsymbol{u}$

The properties above are also practically and mathematically important. (All of this applies to \mathbb{R}^{2} as well.)

Vector spaces afford us a structure of the space that we can exploit. For example:
Two vectors \boldsymbol{u} and \boldsymbol{v} are linearly dependent if there are scalars a and b, that are both not zero such that

$$
a \boldsymbol{u}+b \boldsymbol{v}=\mathbf{0}
$$

Vectors that are not linearly dependent are called linearly independent. For linearly independent vectors, the equation above is true only if $a=b=0$.

Vector spaces afford us a structure of the space that we can exploit. For example:
Two vectors \boldsymbol{u} and \boldsymbol{v} are linearly dependent if there are scalars a and b, that are both not zero such that

$$
a \boldsymbol{u}+b \boldsymbol{v}=\mathbf{0}
$$

Vectors that are not linearly dependent are called linearly independent.
For linearly independent vectors, the equation above is true only if $a=b=0$. Note that since a and b cannot both zero then, for example, if $a \neq 0$, we have

$$
\boldsymbol{u}=-\frac{b}{a} \boldsymbol{v}=c \boldsymbol{v}
$$

for c another constant, a more intuitive definition for linear dependence.

Vector spaces afford us a structure of the space that we can exploit. For example:
Two vectors \boldsymbol{u} and \boldsymbol{v} are linearly dependent if there are scalars a and b, that are both not zero such that

$$
a \boldsymbol{u}+b \boldsymbol{v}=\mathbf{0}
$$

Vectors that are not linearly dependent are called linearly independent.
For linearly independent vectors, the equation above is true only if $a=b=0$. Note that since a and b cannot both zero then, for example, if $a \neq 0$, we have

$$
\boldsymbol{u}=-\frac{b}{a} \boldsymbol{v}=c \boldsymbol{v}
$$

for c another constant, a more intuitive definition for linear dependence.

Example

For every pair in the set of 4 vectors below, determine if each pair is linearly independent or dependent.

$$
(3,-2), \quad(-6,4), \quad(5,-7), \quad(0,0) .
$$

Linear dependence

Note that most linear dependence computations are actually just an exercise in linear systems.

Example

Determine if $\boldsymbol{u}=(3,-2)$ and $\boldsymbol{v}=(-2,7)$ are linearly independent. If they are, find numbers a and b such that $a \boldsymbol{u}+b \boldsymbol{v}=(11,-4)$.

Linear dependence

Note that most linear dependence computations are actually just an exercise in linear systems.

Example

Determine if $\boldsymbol{u}=(3,-2)$ and $\boldsymbol{v}=(-2,7)$ are linearly independent. If they are, find numbers a and b such that $a \boldsymbol{u}+b \boldsymbol{v}=(11,-4)$.
The operation above, writing one vector as a sum of others, is most useful when the summands are linearly independent.

Linear dependence for 3 vectors

We have defined linear dependence in such a way that generalizing this concept to 3 (or more) vectors can be done:

Three vectors $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are linearly dependent if there are three scalars a, b, and c, which are not all zero, such that

$$
a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}=\mathbf{0}
$$

If these vectors are not linearly dependent, then they are linearly independent, i.e., the above equation is true only if $a=b=c=0$.

Linear dependence for 3 vectors

We have defined linear dependence in such a way that generalizing this concept to 3 (or more) vectors can be done:

Three vectors $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are linearly dependent if there are three scalars a, b, and c, which are not all zero, such that

$$
a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}=\mathbf{0}
$$

If these vectors are not linearly dependent, then they are linearly independent, i.e., the above equation is true only if $a=b=c=0$.

We are mostly concerned with situations when independence turns out to be "good" and dependence is "bad".

All these vectors can either be in \mathbb{R}^{2} or \mathbb{R}^{3}.

Linear dependence via determinants

Testing for linear independence of 3 (or more) vectors is done in the same way as for two vectors: by solving linear systems.

Theorem
Three vectors $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} in \mathbb{R}^{3} are linearly independent if and only if

$$
\operatorname{det}\left(\begin{array}{ccc}
u_{1} & v_{1} & w_{1} \\
u_{2} & v_{2} & w_{2} \\
u_{3} & v_{3} & w_{3}
\end{array}\right) \neq 0
$$

A basis for \mathbb{R}^{3}

We will be concerned with a basis for vector spaces. These are basically a "minimal" collection of vectors that "represent" a vector space.
To understand examples first:
Vectors $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} form a basis for \mathbb{R}^{3} if any other vector \boldsymbol{x} in \mathbb{R}^{3} can be written as

$$
a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}=\boldsymbol{x}
$$

for some scalars a, b, c.

A basis for \mathbb{R}^{3}

We will be concerned with a basis for vector spaces. These are basically a "minimal" collection of vectors that "represent" a vector space.

To understand examples first:
Vectors $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} form a basis for \mathbb{R}^{3} if any other vector \boldsymbol{x} in \mathbb{R}^{3} can be written as

$$
a \boldsymbol{u}+b \boldsymbol{v}+c \boldsymbol{w}=\boldsymbol{x}
$$

for some scalars a, b, c.
Equivalently: these vectors are a basis for \mathbb{R}^{3} if $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w} are linearly independent.

Subspaces

A final important concept is that of subspaces.
Given a vector space V (like \mathbb{R}^{3}), a subspace is any subset of V satisfying the definition of a vector space.
I.e., is a subset such that (a) adding two elements in the subspace together results in something in the same subspace and (b) multiplying any element by a scalar results in a vector again in the subspace.

Subspaces

A final important concept is that of subspaces.
Given a vector space V (like \mathbb{R}^{3}), a subspace is any subset of V satisfying the definition of a vector space.
I.e., is a subset such that (a) adding two elements in the subspace together results in something in the same subspace and (b) multiplying any element by a scalar results in a vector again in the subspace.

Subspaces in \mathbb{R}^{3} are lines and planes passing through the origin.

