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Numerical Methods for Solving DE's
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Differential Equations L09-501

The DE
y'(x) = f(z,y), y(70) = Yo,

cannot be solved analytically (with pencil and paper yielding an explicit
formula for y(z)) for general f.

However, we can approximate the solution using an algorithm.
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Differential Equations L09-501

The DE
y'(z) = f(x,y), y(zo) = Yo,

cannot be solved analytically (with pencil and paper yielding an explicit
formula for y(z)) for general f.
However, we can approximate the solution using an algorithm.
We will present three algorithmic ways to approximate the solution y(z) at a
discrete set of x values:

@ the Euler method

@ the Improved Euler method

@ a Runge-Kutta method
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The Euler method
Recall that for the DE

Y (x) = f(z,y),

we can plot a slope fields that visually approximate

L09-502
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The Euler method L09-502
Recall that for the DE

Y (x) = f(z,y),

we can plot a slope fields that visually approximate DE solutions:
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The idea behind the Euler method is straightforward from this picture: we
will use lines whose slopes are defined by the slope field to trace out a(n
approximate) solution.
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The Euler method algorithm L09-503

The Euler method algorithm is as follows: let h > 0 be a fixed stepsize. We
will travel h units in the z direction along a line in the slopefield:

y(xo) =y = y(xo+h)=~yo+hf(zo,v0)-
Let us give our approximation to y(xo + h) some notation:
T1:=x0+h
Y1 = Yo + hf(wo,v0) =~ y(z1)
Note that y; # y(z1)! One is an approximation, the other is the exact value.

y
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The Euler method algorithm L09-504

The Euler method iterates this procedure: with
T, = xg + nh,

then y,,+1 is computed by assuming that y(z,) = v, and using the slope
field there:

y(xn-&-l) X Yn41 = Yn T hf(xmyn)~

y

(xz, ¥2)

TG @190 X

Note that this is an algorithm and can (should) be programmed.
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Euler's method L09-505

Example (Example 1, section 2.4)
Apply Euler's method to approximate the solution of the initial value problem

1
Y (r) =z + =Y y(0) = —3.

First use h = 1 for x € [0, 5], and then use h = 0.2 on z € [0, 1].
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Euler's method L09-505

Example (Example 1, section 2.4)

Apply Euler's method to approximate the solution of the initial value problem

1
Y (r) =z + =Y y(0) = —3.

First use h = 1 for x € [0, 5], and then use h = 0.2 on z € [0, 1].

10
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Euler's method L09-505

Example (Example 1, section 2.4)

Apply Euler's method to approximate the solution of the initial value problem

1
Y (r) =z + =Y y(0) = —3.

First use h = 1 for x € [0, 5], and then use h = 0.2 on z € [0, 1].

10

Demo: euler_demo.ipynb
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Errors committed using Euler's method L09-506

We have seen that using the stepsize h with Euler's method results in some
errors.

A relatively benign error is that committed at each step, the Jocal error:
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Errors committed using Euler's method L09-507

Far more troublesome is the fact that we approximate future values using
current values, which are already approximate. This is a global or cumulative

error.
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Convergence of the Euler algorithm L09-S08

One of the main reasons why Euler’s algorithm is useful is that the computed
solutions converge to the real solution as h | 0.

Theorem
Consider the differential equation

Y (x) = fz,y), y(a) = yo,

Suppose this IVP has a unique solution y(x) for x on the interval [a, b].
Further assume that y(x) has continuous second derivative on this interval.
Then for all h > 0, there is a constant C' such that

|yn - y(mn)| < Ch7

for all n = 0 such that x,, := a + nh < b, and y,, is the Euler algorithm
approximation to y(x,,) computed using the stepsize h.
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"Better" algorithms L09-509

The Euler algorithm, despite its apparent use, is rarely used in practice.

It is less "stable", less "efficient", and less "accurate" than alternative
methods.

Many algorithms improve on Euler by observing that the slope of the line,
f(xn,yn), can be changed for improvement.
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"Better" algorithms L09-509

The Euler algorithm, despite its apparent use, is rarely used in practice.

It is less "stable", less "efficient", and less "accurate" than alternative
methods.

Many algorithms improve on Euler by observing that the slope of the line,
f(xn,yn), can be changed for improvement.

A simple improvement is the so-called improved Euler algorithm.
Un+1 = Yn + hf(l'n-, yn)a

1 1
Yntl =Yn +h |:2f(17nsyn) + Qf(In,Jr]aunJrl))
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Convergence of improved Euler L09-510

Theorem
Consider the differential equation

y'(x) = f(z,y), y(a) = yo,

Suppose this IVP has a unique solution y(x) for x on the interval [a,b].
Further assume that y(x) has continuous third derivative on this interval.
Then for all h > 0, there is a constant C such that

[Yn — y(xn)| < ChZa

for all n = 0 such that x,, == a + nh < b, and y,, is the improved Euler
algorithm approximation to y(x,) computed using the stepsize h.
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Convergence of improved Euler L09-510

Theorem
Consider the differential equation

y'(x) = f(z,y), y(a) = yo,

Suppose this IVP has a unique solution y(x) for x on the interval [a,b].
Further assume that y(x) has continuous third derivative on this interval.
Then for all h > 0, there is a constant C such that

[Yn — y(xn)| < ChZa

for all n = 0 such that x,, == a + nh < b, and y,, is the improved Euler
algorithm approximation to y(x,) computed using the stepsize h.

Note that if & is small, say h = 0.01, then
(improved Euler error)  h? « h  (Euler error).

This is one main motivation for using improved Euler.
Demo: improved_euler_demo.ipynb
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A standard, ubiquitous algorithm L09-S11

Euler and improved Euler are actually special cases of a family of algorithms
called Runge-Kutta methods.

A particular, popular Runge-Kutta method is "Runge-Kutta 4", and is based
on Simpson’s Rule for numerical approximation of integrals. Recall that

th(x)dos ~ % [f(o) +2f <Z) +2f <;L> +f(h)].

This is Simpson's rule for approximating integrals.

This is relevant for DE's since

zo+h
Y = flz,y) + ylxo) =yo = y(zo+ h) = y(zo) + J f(z,y(x))dz.

zo

(This is the Fundamental Theorem of Calculus.)
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Runge-Kutta 4 L09-512

The Runge-Kutta 4 algorithm applies Simpson’s rule for integration at every
time step, using approximations to estimate intermediate slopes.

ki = f(xnvyn)a

h h
kg = f (In + g,yn + 2k1>

h h
k3 = f (xn + §7yn + 2k2)

k4 :f(xn+hayn+hk3)7

h
Yn+1 = Yn + 3 [kl + 2ko + 2ks +k4].
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Runge-Kutta 4 L09-512

The Runge-Kutta 4 algorithm applies Simpson’s rule for integration at every
time step, using approximations to estimate intermediate slopes.

k'l = f(xnvyn)a

h h
ke = f (In + gyyn + 2k1>

2
ky :f($n+h,yn+hk3),

h h
kS = f (xn + 5,Yn + 2k2)

h
Yn+1 = Yn + 3 [kl + 2ko + 2ks +k4].

Under appropriate assumptions (y is several times differentiable), then the
error committed by the Runge-Kutta 4 algorithm is
|yn - y(mn)| < Ch/1,

Again, h* « h? « h for small h, motivating the use of this algorithm.
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Runge-Kutta 4 L09-512

The Runge-Kutta 4 algorithm applies Simpson’s rule for integration at every
time step, using approximations to estimate intermediate slopes.

k'l = f(xnvyn)a

h h
ke = f (In + §7yn + 2k1>

2
ky :f(In+h,yn+hk3),

h h
kS = f (xn + 5,Yn + 2k2)

h
Yn+1 = Yn + 3 [kl + 2ko + 2ks +k4].

Under appropriate assumptions (y is several times differentiable), then the
error committed by the Runge-Kutta 4 algorithm is

|yn - y(mn)| < Ch/1,
Again, h* « h? « h for small h, motivating the use of this algorithm.

Demo: runge_kutta_demo.ipynb, numerical_converence.ipynb
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