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4 Chapter 1 First-Order Differential Equations

Mathematical Models
Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original
real-world situation—for example, answering the question originally posed.
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FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and t) that describe the given situation, together with one or more equations
relating these variables (dP=dt D kP , P.0/ D P0) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function of t). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP=dt D kP , P.0/ D 1000, describing the bac-
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function P.t/ D 1000e.ln 2/t D 1000 ! 2t as our mathemat-
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted t D 1:5 to obtain the predicted population of
P.1:5/ " 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P.t/D Cekt in Eq. (7) accurately
describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP=dt D kP is inadequate
for modeling the world population—which in recent decades has “leveled off” as
compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.
With sufficient insight, we might formulate a new mathematical model including
a perhaps more complicated differential equation, one that takes into account such
factors as a limited food supply and the effect of increased population on birth and
death rates. With the formulation of this new mathematical model, we may attempt
to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If
we can solve the new differential equation, we get new solution functions to com-

Mathematical variables correspond to values
of scalars/fields
Mathematical models are quantitative
relationships (usually equations) between
variables.

The goal is to predict reality.
Closed-loop modeling cycles use measurements from reality to inform models.

All models are wrong, but some are useful.
– George Box

"Science and statistics", Journal of the American Statistical Association, 71:
791–799, doi: 10.1080/01621459.1976.10480949
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Differential equations (DE’s) are a type of model:
They are equations involving derivatives (of the mathematical variables).

Algebraic equations, e.g., x2 ` 4x` 4 “ 0 are fundmentally different from
DE’s.

dy

dx
“ x2,

dx

dt
“

x2

t2

The goals of DE modeling are to

Discover/determine DE models
Solve DE’s for variables
Interpret and understand results
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Newton’s second law of motion
Newton’s law of cooling
Population growth
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With algebraic equations, we are usually interested in solving for specific
values or numbers.

x2 ` 4x` 4 “ 0, log6p3
x2

´ 3q “ 1

Solving differential equations requires much more: we require an entire
function.

y1 “ 3y is solved with ypxq “ expp3xq

ypxq “ C exppx2q yields the DE y1 “ 2xy

In both cases, the solution to the equation is the explicit formula for ypxq.

Verifying that a given function satisfies a DE is usually easy (just
substitution).
Determining the solution to a given DE is usually quite hard.
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DE’s actually require more information than the model itself: if a population
P ptq satisfies the DE

dP

dt
“ 3P,

what will the population be 3 years from now?

The initial conditions or initial data for a DE are given values of the variables
at some initial or starting time.
In this class: initial time frequently t “ 0.

Example: Verify that ypxq “ 1{pC ´ xq for an arbitrary constant C satisifes
the DE y1 “ y2.
Find the solution to the DE also satisfying the initial data yp1q “ 2.

A DE coupled with initial conditions is an initial value problem.
Generally, DE’s always require initial data to yield unique solutions.
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L01-S06More terminology

A portion of this class involves determining a taxonomy of DE’s.

The order of a DE is the highest derivative order that appears in the
equation.

A DE that has order n is called an nth order DE.

A function satisfies the DE if it is the solution.

Sometimes a DE is only solvable for the independent variable taking values
on an interval I of the real line. We say the DE is satisfied on the interval I.

There are ordinary differential equations, involving only ordinary deriatives,
and partial differential equations, involving partial deriatives.
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