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In all problems below, {pn}n∈N0 is a collection of L2
w-orthonormal polynomials where

w is a non-negative weight function on R. The three-term recurrence coefficients for
this family are {an}n∈N and {bn}n∈N0 . Pn is the space of univariate polynomials of
degree n or less.

1. Assume that w has compact support on [a, b] ⊂ R. This problem concerns
computation of quadrature rules with prescribed nodes outside the open
interval (a, b). For this purpose, a quadrature rule is called optimal if its
order of accuracy is as large as possible. For example, an n-point Gaussian
quadrature rules, which has no a priori prescribed nodes, is optimal, having
order of accuracy 2n− 1. We assume below that 1 ≤ q ≤ n.
a.) Suppose that {x1, . . . , xq} is a set of points outside (a, b). Show that

an n-point rule with q prescribed nodes at {x1, . . . , xq} cannot have
order of accuracy 2n− q.

b.) Under the conditions in part a, show that an order-(2n−q−1) accurate
rule is given by an interpolatory quadrature rule, whose nodes are
{x1, . . . xq} unioned with the (n− q)-point Gaussian quadrature nodes
for the weight function

v(x) := w(x)

q∏
j=1

|x− xj | .

(Note that since the xj are outside (a, b), then v is just w multiplied
by a polynomial on [a, b]. The absolute value bars only serve to ensure
that v has a non-negative value on [a, b].)

c.) Let α, β > −1 be fixed, arbitrary real numbers, and consider the family
of (α, β)-parameter Jacobi polynomials on [−1, 1]. A (Jacobi-)Gauss-
Radau quadrature rule, with prescribed node at x = +1, is an n-
point quadrature rule that is optimal. Explain how to compute the
nodes of the (α, β) Gauss-Radau quadrature rule in terms of (standard)
Gaussian quadrature rules of other Jacobi polynomial families.

d.) Explain how to compute the nodes of the (α, β) Gauss-Radau quadra-
ture rule with prescribed node at x = −1 in terms of (standard) Gaus-
sian quadrature rules of other Jacobi polynomial families.

e.) A (Jacobi-)Gauss-Lobatto quadrature rule is an optimal quadrature
rule with 2 prescribed nodes at x = ±1. Explain how to compute the
nodes of the (α, β) Gauss-Lobatto quadrature rule in terms of (stan-
dard) Gaussian quadrature rules of other Jacobi polynomial families.
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2. This problem concerns the Gauss-Radau rules considered in problem # 1,
but in a more general context. Here, assume w is any weight function.
a.) Define the ratio of two successive polynomials in the L2

w-orthonormal
sequence,

rn(x) :=
pn(x)

pn−1(x)
, n ≥ 1.

Show that r′n(x) > 0 for all x ∈ R\p−1n−1(0).

b.) Prove that any level set of rn has exactly n points. I.e., show that∣∣r−1n (c)
∣∣ = n for any c ∈ R, where | · | denotes the number of elements

in a subset of R.

c.) Fix a ∈ R. Show that, if a 6∈ p−1n−1(0), then a ∈ r−1n (rn(a)).

d.) Fix c ∈ R. Prove that the n nodes {x1, . . . , xn} := r−1n (c), along with
the n weights defined by

wj :=

(
n−1∑
k=0

p2k(xj)

)−1
, 1 ≤ j ≤ n,

form an n-point quadrature rule that is exact for polynomials of degree
at least 2n − 2. For which values of c does the quadrature rule have
the optimal order of 2n− 1?

e.) Fix a ∈ R\p−1n−1(0). Describe an algorithm that computes an n-point
quadrature rule, with one node prescribed at x = a, with order of
accuracy at least 2n−2. Your algorithm should use spectral quantities
of a Jacobi matrix, similar to how standard Gauss quadrature rules are
computed, but this Jacobi matrix need not be the one associated to
w. You do not need to implement such an algorithm.

3. This problem studies approximations of derivatives. Consider the class of
functions fq from the previous assignment:

f0(x) =

{
0, x < 0 and x > 1
1, 0 ≤ x ≤ 1

fq(x) =
1

Cq

∫ x

−1
fq−1(s) ds, Cq =

∫ 1

−1
fq−1(s) ds, q ≥ 1

For x ∈ [−1, 1] with the Legendre weight, numerically compute algebraic
rates of convergence in N for N -point Gauss quadrature interpolants for

f
(j)
q , 0 ≤ j ≤ q ≤ 4, where f

(j)
q is the jth derivative of fq. Discuss how

differentiation affects rates of convergence.
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4. For f ∈ L2
w, the best L2

w degree-N approximation to f is the Fourier pro-
jection fN :

fN (x) :=
N∑

n=0

f̂npn(x), f̂n := 〈f, pn〉w .

A second approximation is the (N + 1)-point Gauss quadrature interpolant
INf :

INf :=

N∑
j=0

f̃npn(x), INf(xj) = f(xj), {xj}N+1
j=1 = p−1N+1(0).

The difference fN − INf is called aliasing error. For w the Legendre weight
function on [−1, 1], compute L2

w and L∞ norms for the aliasing error for
the functions f (q) above, for q = 0, 1, 2 and various N . Compare norms
of the aliasing error to those of the Fourier projection error, f − fN . In
particular, analyze convergence rates of the aliasing error to 0 compared to
convergence rates of fN − f and discuss how this depends on q. For this
example (this choice of w and functions) does interpolation negatively affect
rates of convergence for Fourier projections?
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