Department of Mathematics, University of Utah
 Orthogonal polynomials/Spectral methods for PDEs
 MATH 5750/6880 - Section 002 - Fall 2018

Homework 2
Quadrature and approximations
Due September 20, 2018

In all problems below, $\left\{p_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a collection of L_{w}^{2}-orthonormal polynomials where w is a non-negative weight function on \mathbb{R}. The three-term recurrence coefficients for this family are $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}} . P_{n}$ is the space of univariate polynomials of degree n or less.

1. Consider the weight function with support on $[-1,1]$ given by

$$
w(x)=\frac{1}{\pi \sqrt{1-x^{2}}} .
$$

a.) Show that the sequence of polynomials $\left\{T_{n}\right\}_{n \geq 0}$ defined by $T_{n}(x):=$ $\cos (n \arccos x)$, are L_{w}^{2} orthogonal, and compute the associated normalizing constants that would define an orthonormal sequence $\left\{p_{n}\right\}_{n \geq 0}$ in terms of $\left\{T_{n}\right\}_{n \geq 0}$. The polynomials T_{n} are called Chebyshev polynomials.
b.) Compute an explicit formula for the zeros of the Chebyshev polynomials, hence for the nodes of a w-Gaussian quadrature rule.
2. Fix $n \in \mathbb{N}$.
a.) Let $x \in \mathbb{R}$ be fixed but arbitrary. Consider the linear functional δ_{x}, corresponding to point-evaluation at x :

$$
\delta_{x}: C(\mathbb{R}) \rightarrow \mathbb{R}, \quad \delta_{x}(f)=f(x)
$$

where $C(\mathbb{R})$ is the space of continuous functions on \mathbb{R}. Consider the space P_{n-1}, and note that $P_{n-1} \subset C(\mathbb{R}) \cap L_{w}^{2}$. Compute an explicit expression, in terms of the orthonormal family p_{n}, for the operator norm of δ_{x} induced by the norm on $P_{n-1} \subset L_{w}^{2}$:

$$
\left\|\delta_{x}\right\|:=\sup _{f \in P_{n-1} \backslash\{0\}} \frac{\left|\delta_{x}(f)\right|}{\|f\|_{L_{w}^{2}}} .
$$

b.) Let x_{1}, \ldots, x_{n} be the nodes of the n-point Gaussian quadrature rule. Let V be the associated $n \times n$ Vandermonde-like matrix with entries

$$
(V)_{j, k}=p_{k-1}\left(x_{j}\right), \quad 1 \leq j, k \leq n
$$

Show that the singular values of V are equal to $\left\|\delta_{x_{j}}\right\|, j=1, \ldots, n$.
3. Let w be the constant function on $[-1,1]$ and zero elsewhere. Consider the function,

$$
g_{n}(x):=x^{n}+x^{2},
$$

over the interval $[-1,1]$. Use a $2 n$-point Gauss quadrature rule to compute an interpolant in $P_{2 n-1}$ in the basis $\left\{p_{n}\right\}$,

$$
\widetilde{g}_{n}(x)=\sum_{j=0}^{2 n-1} c_{j} p_{j}(x) .
$$

We seek to compute new coefficients d_{j} such that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \widetilde{g}_{n}(x)=\sum_{j=0}^{2 n-1} d_{j} p_{j}(x)
$$

Consider the following two (mathematically equivalent) ways to compute d_{j} :

- Use coefficients $C_{n, j}$ defined as

$$
p_{n}^{\prime}(x)=\sum_{j=0}^{n-1} C_{n, j} p_{j}(x)
$$

to directly transform c_{j} to d_{j}.

- Transform \widetilde{g}_{n} to a monomial representation, differentiate with the power rule, and then transform back to the basis p_{j} :

$$
\sum_{j=0}^{2 n-1} c_{j} p_{j}(x) \longrightarrow \sum_{j=0}^{2 n-1} m_{j} x^{j} \xrightarrow{\frac{d}{d x}} \sum_{j=1}^{2 n-1} j m_{j} x^{j-1} \longrightarrow \sum_{j=0}^{2 n-1} d_{j} p_{j}(x) .
$$

There are tools in pyopoly that can help in computing $C_{n, j}$ and connecting to monomials and back, see the methods canonical_connection, canonical_connection_inverse, and derivative_expansion in the OrthogonalPolynomialBasis1D class. Implement both of the above procedures. For $n=2,3,4, \ldots, 50$, generate plots with numerical results that demonstrate (a) that \widetilde{g}_{n} accurately approximates g_{n} to considerable precision both in the L_{w}^{2} and L^{∞} norms, (b) that when computing derivatives with large n, using the $C_{n, j}$ coefficients is more accurate in both L_{w}^{2} and L^{∞} norms than going through monomials. For large n, which step of the monomial process introduces errors?
4. Consider the functions $f_{q}, q \geq 0$, defined by

$$
\begin{gathered}
f_{0}(x)=\left\{\begin{array}{cl}
0, & x<0 \text { and } x>1 \\
1, & 0 \leq x \leq 1
\end{array}\right. \\
f_{q}(x)=\frac{1}{C_{q}} \int_{-1}^{x} f_{q-1}(s) \mathrm{d} s, \quad C_{q}=\int_{-1}^{1} f_{q-1}(s) \mathrm{d} s, \quad q \geq 1
\end{gathered}
$$

Consider approximating these functions in L_{w}^{2}, where w is the constant weight function on $[-1,1]$. For each of $q=0,1,2,3$, compute N-point Gauss qaudrature interpolants for these functions for $N=1, \ldots, 200$, along with numerically-computed L_{w}^{2} and L^{∞} errors. How do the errors of each of these functions decay as N is increased? Can you make a conjecture about what property of these functions governs the rate of convergence?

