DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Orthogonal polynomials/Spectral methods for PDEs MATH 5750/6880 – Section 002 – Fall 2018 Homework 1 Orthogonal polynomials

Due September 6, 2018

In all problems below, $\{p_n\}_{n \in \mathbb{N}_0}$ is a collection of L^2_w -orthonormal polynomials where w is a non-negative weight function on \mathbb{R} . The three-term recurrence coefficients for this family are $\{a_n\}_{n \in \mathbb{N}}$ and $\{b_n\}_{n \in \mathbb{N}_0}$.

1. Let p_n have (positive) leading coefficient $\kappa_n > 0$, i.e.,

 $p_n(x) = \kappa_n x^n + \cdots$

Define $P_n(x) = p_n(x)/\kappa_n$. The family $\{P_n\}_{n \in \mathbb{N}_0}$ are called a *monic* orthogonal polynomial sequence.

- **a**.) Compute κ_n explicitly in terms of the recurrence coefficients for p_n .
- **b**.) The P_n satisfy a three-term recurrence formula

$$xP_n(x) = A_{n+1}P_{n+1}(x) + B_{n+1}P_n(x) + C_{n+1}P_{n-1}(x), \quad n \in \mathbb{N}_0.$$

Derive expressions for the (A_n, B_n, C_N) in terms of the recurrence for the original family.

2. Define a new weight function

$$\omega(x) = w(bx + a), \qquad b > 0, \quad a \in \mathbb{R}$$

Let $\{\pi_n\}_{n\in\mathbb{N}_0}$ be an orthonormal polynomial family in L^2_{ω} . Compute the recurrence coefficients for π_n in terms of those for p_n .

- **3.** Suppose w is an even function. Show that
 - **a**.) $a_n = 0$ for all n.
 - **b**.) p_{2k} is an even function for all $k \in \mathbb{N}_0$.
 - **c**.) p_{2k+1} is an odd function for all $k \in \mathbb{N}_0$.

4. Assume w(x) has compact support on $[a,b] \subset \mathbb{R}$ for some $a,b \in \mathbb{R}$. I.e., w(x) = 0 for $x \notin [a,b]$. Let $x_0 < a$ be arbitrary and define $\omega(x) = (x - x_0)w(x)$. Let $\{\pi_n\}_{n\in\mathbb{N}_0}$ be the family of L^2_{ω} -orthonormal polynomials. Show that there exist constants u_n, v_n , such that

$$(x - x_0)\pi_n(x) = u_n p_{n+1}(x) + v_n p_n(x), \qquad n \ge 0.$$

(This is a specialization of a *Christoffel Theorem.*) What does this result tell you about the connection coefficients between $\{p_n\}$ and $\{\pi_n\}$?