Department of Mathematics, University of Utah Orthogonal polynomials/Spectral methods for PDEs MATH 5750/6880 - Section 002 - Fall 2018
 Homework 1
 Orthogonal polynomials

Due September 6, 2018

In all problems below, $\left\{p_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a collection of L_{w}^{2}-orthonormal polynomials where w is a non-negative weight function on \mathbb{R}. The three-term recurrence coefficients for this family are $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}}$.

1. Let p_{n} have (positive) leading coefficient $\kappa_{n}>0$, i.e.,

$$
p_{n}(x)=\kappa_{n} x^{n}+\cdots .
$$

Define $P_{n}(x)=p_{n}(x) / \kappa_{n}$. The family $\left\{P_{n}\right\}_{n \in \mathbb{N}_{0}}$ are called a monic orthogonal polynomial sequence.
a.) Compute κ_{n} explicitly in terms of the recurrence coefficients for p_{n}.
b.) The P_{n} satisfy a three-term recurrence formula

$$
x P_{n}(x)=A_{n+1} P_{n+1}(x)+B_{n+1} P_{n}(x)+C_{n+1} P_{n-1}(x), \quad n \in \mathbb{N}_{0} .
$$

Derive expressions for the $\left(A_{n}, B_{n}, C_{N}\right)$ in terms of the recurrence for the original family.
2. Define a new weight function

$$
\omega(x)=w(b x+a), \quad b>0, \quad a \in \mathbb{R}
$$

Let $\left\{\pi_{n}\right\}_{n \in \mathbb{N}_{0}}$ be an orthonormal polynomial family in L_{ω}^{2}. Compute the recurrence coefficients for π_{n} in terms of those for p_{n}.
3. Suppose w is an even function. Show that
a.) $a_{n}=0$ for all n.
b.) $p_{2 k}$ is an even function for all $k \in \mathbb{N}_{0}$.
c.) $p_{2 k+1}$ is an odd function for all $k \in \mathbb{N}_{0}$.
4. Assume $w(x)$ has compact support on $[a, b] \subset \mathbb{R}$ for some $a, b \in \mathbb{R}$. I.e., $w(x)=0$ for $x \notin[a, b]$. Let $x_{0}<a$ be arbitrary and define $\omega(x)=(x-$ $\left.x_{0}\right) w(x)$. Let $\left\{\pi_{n}\right\}_{n \in \mathbb{N}_{0}}$ be the family of L_{ω}^{2}-orthonormal polynomials. Show that there exist constants u_{n}, v_{n}, such that

$$
\left(x-x_{0}\right) \pi_{n}(x)=u_{n} p_{n+1}(x)+v_{n} p_{n}(x), \quad n \geq 0
$$

(This is a specialization of a Christoffel Theorem.) What does this result tell you about the connection coefficients between $\left\{p_{n}\right\}$ and $\left\{\pi_{n}\right\}$?

