DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH
Orthogonal polynomials/Spectral methods for PDEs
MATH 5750/6880 — Section 002 — Fall 2018
Final project
Partial differential equations

Due December 11, 2018

Solve exactly 2 from the 4 problems below of your choice, and submit solutions
for only those two problems.

1. Consider the partial differential equation

*AU‘FU(IE,y) :f(xay)v (l',y) € (7151)2
u('xa_l) :U(J),l) :Oa U(Ly) :u(_lvy) =0
Use a tensorized Legendre-Galerkin method with polynomials up to degree N in
each dimension to solve this partial differential equation. If you write all degrees
of freedom in a vector, then the a solution scheme involves solving a large linear
system. However, in this case it is easier if you arrange degrees of freedom in a

matrix and write the conditions for the scheme in matrix form, in particular as the
solution to a Sylvester equation.

e Code up a scheme that uses a Sylvester equation solver to compute solutions.
(E.g., Python and Matlab have builtin Sylvester equation solvers.)

e Prove, without the use of Lax-Milgram or Céa’s Lemma, that the Sylvester
equation has a unique solution. (The requisite knowledge on Sylvester equa-
tions is available, e.g., from Wikipedia.)

e Choose f so that u(z,y) = (1 —22)(1 — y?)sin(3x + 4y). Show a convergence
plot of the Legendre-Galerkin method as a function of N. What kind of
convergence do you see?

2. Consider the partial differential equation
u = ¢ Vu(z,y),
with periodic boundary conditions on (z,y) € [0,27)2. Let the wavespeed be
c(x,y) = (exp(sinx), exp(—cosx)) .
e Code up a Fourier-Galerkin and a Fourier-collocation method for this PDE.

e Discuss the computational complexity of each of your solvers.

e Investigate the accuracy of your solver, both in terms of timestep size and
number of polynomial terms N. (E.g., by using an extremely refined comp-
tuational solution as the “exact” solution.)
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3. Consider the viscous Burgers’ partial differential equation,

w2
U + <2> = Vg, = € (—1,1)

u(£1,¢) = 0.

u(z,0) = sin(7x).

Implement both a Legendre-Galerkin and Legendre-collocation solver for this equa-
tion.

e For wviscous Burgers’, v > 0, show and discuss results for ¢ > 0 when v is
small, and when v is large.

e For inviscid Burgers’, v = 0, what differences do you observe between the
collocation and Galerkin methods? Do the solutions appear to be accurate
for large t7

e For the inviscid Burgers’ equation, introduce a filter into your scheme. (Filters
for polynomial methods are applied just as filters for Fourier Series methods,
with the polynomial degree replacing the frequency parameter.) You can
apply a filter after every time step, or after every P > 1 timesteps. Experiment
with different filters and values of P, and report results for what appears to be
a “good” setting for these. How do the filtered results for this PDE compare
to the unfiltered results for the viscous Burgers’ equation?

4. Consider the second-order wave equation,

Ut = Uz, x e (—171)

u(x,0) = ug(x), ug(z,0) = vo(x)

We cannot directly solve this equation as written using techniques introduced in
this class so far. Introduce an auxilliary variable v(z,t) defined implicitly by the
PDE

Up = Vg, v(z,0) = / vo(s)ds

—1

Show that this definition allows one to write the second-order wave equation to a
system of two linear first-order, coupled, wave equations of the form w; = Aw, for
a vector w = (u,v)7.

e Derive the appropriate boundary conditions for this system: transform your
system via a transformation defined from the diagonalization of the Jacobian
A to reveal an uncoupled system, and use this to derive an appropriate set of
boundary conditions for the second-order wave equation.

e Impose homogeneous Dirichlet boundary conditions and code up both
Legendre-Galerkin and Legendre-collocation schemes to compute solutions to
u. Investigate the accuracy of your solver, both in terms of timestep size
and number of polynomial terms N. (E.g., by using an extremely refined
comptuational solution as the “exact” solution.)
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