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Partial differential equations

Due December 11, 2018

Solve exactly 2 from the 4 problems below of your choice, and submit solutions
for only those two problems.

1. Consider the partial differential equation

−∆u+ u(x, y) = f(x, y), (x, y) ∈ (−1, 1)2

u(x,−1) = u(x, 1) = 0, u(1, y) = u(−1, y) = 0

Use a tensorized Legendre-Galerkin method with polynomials up to degree N in
each dimension to solve this partial differential equation. If you write all degrees
of freedom in a vector, then the a solution scheme involves solving a large linear
system. However, in this case it is easier if you arrange degrees of freedom in a
matrix and write the conditions for the scheme in matrix form, in particular as the
solution to a Sylvester equation.

• Code up a scheme that uses a Sylvester equation solver to compute solutions.
(E.g., Python and Matlab have builtin Sylvester equation solvers.)

• Prove, without the use of Lax-Milgram or Céa’s Lemma, that the Sylvester
equation has a unique solution. (The requisite knowledge on Sylvester equa-
tions is available, e.g., from Wikipedia.)

• Choose f so that u(x, y) = (1− x2)(1− y2) sin(3x+ 4y). Show a convergence
plot of the Legendre-Galerkin method as a function of N . What kind of
convergence do you see?

2. Consider the partial differential equation

ut = c · ∇u(x, y),

with periodic boundary conditions on (x, y) ∈ [0, 2π)2. Let the wavespeed be

c(x, y) = (exp(sinx), exp(− cosx)) .

• Code up a Fourier-Galerkin and a Fourier-collocation method for this PDE.

• Discuss the computational complexity of each of your solvers.

• Investigate the accuracy of your solver, both in terms of timestep size and
number of polynomial terms N . (E.g., by using an extremely refined comp-
tuational solution as the “exact” solution.)
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3. Consider the viscous Burgers’ partial differential equation,

ut +

(
u2

2

)
x

= νuxx, x ∈ (−1, 1)

u(±1, t) = 0.

u(x, 0) = sin(πx).

Implement both a Legendre-Galerkin and Legendre-collocation solver for this equa-
tion.

• For viscous Burgers’, ν > 0, show and discuss results for t > 0 when ν is
small, and when ν is large.

• For inviscid Burgers’, ν = 0, what differences do you observe between the
collocation and Galerkin methods? Do the solutions appear to be accurate
for large t?

• For the inviscid Burgers’ equation, introduce a filter into your scheme. (Filters
for polynomial methods are applied just as filters for Fourier Series methods,
with the polynomial degree replacing the frequency parameter.) You can
apply a filter after every time step, or after every P > 1 timesteps. Experiment
with different filters and values of P , and report results for what appears to be
a “good” setting for these. How do the filtered results for this PDE compare
to the unfiltered results for the viscous Burgers’ equation?

4. Consider the second-order wave equation,

utt = uxx, x ∈ (−1, 1)

u(x, 0) = u0(x), ut(x, 0) = v0(x)

We cannot directly solve this equation as written using techniques introduced in
this class so far. Introduce an auxilliary variable v(x, t) defined implicitly by the
PDE

ut = vx, v(x, 0) =

∫ x

−1

v0(s) ds

Show that this definition allows one to write the second-order wave equation to a
system of two linear first-order, coupled, wave equations of the form wt = Awx for
a vector w = (u, v)T .

• Derive the appropriate boundary conditions for this system: transform your
system via a transformation defined from the diagonalization of the Jacobian
A to reveal an uncoupled system, and use this to derive an appropriate set of
boundary conditions for the second-order wave equation.

• Impose homogeneous Dirichlet boundary conditions and code up both
Legendre-Galerkin and Legendre-collocation schemes to compute solutions to
u. Investigate the accuracy of your solver, both in terms of timestep size
and number of polynomial terms N . (E.g., by using an extremely refined
comptuational solution as the “exact” solution.)
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