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1. Orthogonal polynomials: basic properties

1.1. Notation. The real numbers and natural numbers are denoted R and N, respectively.
We use the notation

N0 := {0}
⋃
N, [N ] = {0, 1, 2, . . . , N} ⊂ N0,

where N ∈ N0. We will use w : R → [0,∞) to denote a positive, Borel-measurable weight
function on R. The space of univariate algebraic polynomials of degree n or less is Pn, given
by

Pn = span
{

1, x, x2, . . . , xn
}
.

The notation
∫
f(x)dx denotes integration over the entire real line. If w(x) has compact

support, then
∫
f(x)w(x)dx is equivalent to an integral over the compact support. We will

make use of w-weighted L2 spaces, defined as

L2
w :=

{
f : R→ R

∣∣ ‖f‖2w <∞} ,
with the inner product and norm

〈f, g〉w :=

∫
f(x)g(x)w(x)dx, ‖f‖2w := 〈f, g〉w .

1.2. Existence and uniqueness. Given w, we make the following assumptions:

• w(x) has finite polynomial moments of all orders,∫
|x|nw(x)dx <∞(1a)

• For any nontrivial polynomial p on R,∫
p2(x)w(x)dx > 0.(1b)
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This condition is equivalent, for example, to the requirement∫
x2nw(x)dx > 0, n ∈ N0.(1c)

Under these assumptions, a(n essentially unique) sequence of orthogonal polynomials exists.

Theorem 1.1. If (1) hold, then there exist an infinite sequence of polynomials, p0, p1, . . .,
where deg pj = j, such that 〈pj , pk〉w = δj,k for j, k ∈ N0. These polynomials are unique up
to a multiplicative sign.

Proof. We proceed by a Gram-Schmidt induction argument. The existence and essential
uniqueness of p0 follows immediately from the n = 0 version of (1c). For some n ∈ N0,
suppose that {p0, . . . , pn} have been determined such that

〈pj , pk〉w = δj,k, j, k ∈ [n].

Consider gn+1(x) = xn+1. Then {p0, . . . , pn, gn+1} are n+ 2 linearly independent functions;
if this were not true, then we can violate (1b) by a suitable choice of p. In this case, an
orthogonalization procedure can be carried out, such that

p̃n+1(x) = gn+1(x)−
n∑

j=0

〈gn+1, pj〉w pj(x) ∈ Pn+1.

Finally, we define

pn+1(x) =
p̃n+1(x)

‖p̃n+1‖w
.

By construction, we now have

〈pj , pk〉w = δj,k, j, k ∈ [n+ 1],

which completes the inductive step. This procedure produces a polynomial pn+1 that is
unique up to a sign. �

With the establishment of an orthonormal polynomial sequence, we immediately have
that there exist some constants cn,j such that for each n ∈ N0:

xn =
n∑

j=0

cn,jpj(x).

Furthermore, we have for any n ∈ N0:

〈pn, p〉w = 0, p ∈ Pn−1(2)

1.3. The three-term recurrence relation. One of the foundational results in orthogonal
polynomials is their satisfaction of a three-term recurrence relation.

Theorem 1.2. Let {pn}n∈N0 be a sequence of orthonormal polynomials as identified in
Theorem 1.1. Then there exist constants (an, bn) ∈ R× (0,∞) for n ∈ N such that

xpn(x) = bnpn−1(x) + an+1pn(x) + bn+1pn+1(x), n ∈ N0,(3)

where we define p−1 ≡ 0. This determines the polynomials pj, j ≥ 1, and we define
b0 = 1/p0.
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Proof. The relation is clearly true for n = 0 for some numbers a1, b1. Now fix n ≥ 1. First,
we note that clearly there are constants an+1, bn+1, cn+1 and dn,j so that

xpn(x) = an+1pn(x) + bn+1pn+1(x) + cn+1pn−1(x) +
n−2∑
j=0

dn,jpj(x).

We have

〈xpn, pk〉k =


an+1, k = n
bn+1, k = n+ 1
cn+1, k = n− 1,
dn,j , k = j ∈ [n− 2].

Multiplication by x is self-adjoint in L2
w; therefore for any j ∈ [n− 2], we have

〈xpn, pj〉w = 〈pn, xpj〉w
(2)
= 0.

This shows that all the dn,j coefficients vanish. Furthermore,

cn+1 = 〈xpn, pn−1〉w = 〈xpn−1, pn〉w = bn.

This shows the formula (3). By this construction, the bn must be positive: the construction
in Theorem 1.1 shows that the leading coefficient of each pn is positive. By inspection of
(3), this equation cannot hold unless bn+1 is positive for all n. �

1.4. The Christoffel-Darboux identity. One useful relation for orthogonal polynomials
is the following identity.

Theorem 1.3 (Christoffel-Darboux Identity). Let {pn}n∈N0 be an orthonormal polynomial
family with recurrence coefficients (an, bn). Then for all n ∈ N0:

n∑
j=0

pj(x)pj(y) = bn+1
pn+1(x)pn(y)− pn+1(y)pn(x)

x− y
x 6= y(4a)

n∑
j=0

p2j (x) = bn+1

[
p′n+1(x)pn(x)− pn+1(x)p′n(x)

]
(4b)

Proof. The result is a fairly straightforward proof by induction. For n = 0 and x 6= y, we
have

p0(x)p0(y) = p20 =
(x− y)p20
x− y

=
[(x− a1)p0] p0 − [(y − a0)p0] p0

(x− y)

=
b1p1(x)p0(y)− b1p1(y)p0(x)

x− y
,

proving the relation for n = 0. Now if the relation holds for a value n, then

n+1∑
j=0

pj(x)pj(y) =
bn+1pn+1(x)pn(y)− bn+1pn+1(y)pn(x)

x− y
+ pn+1(x)pn+1(y)

=
bn+1pn+1(x)pn(y)− bn+1pn+1(y)pn(x) + xpn+1(x)pn+1(y)− ypn+1(y)pn+1(y)

x− y
(5)
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We now use the three-term recurrence relation for the numerator on the right-hand side,

bn+1pn+1(x)pn(y)− bn+1pn+1(y)pn(x) + xpn+1(x)pn+1(y)− ypn+1(y)pn+1(x)

=bn+1pn+1(x)pn(y)− bn+1pn+1(y)pn(x) + pn+1(y) [bn+2pn+2(x) + an+2pn+1(x) + bn+1pn(x)]

− pn+1(x) [bn+2pn+2(y) + an+2pn+1(y) + bn+1pn(y)]

=bn+2pn+2(x)pn+1(y)− bn+2pn+2(y)pn+1(x)

Combining this with (5) completes the inductive proof. For relation (4b) one can, e.g., use
L’Hôpital’s rule on (4a) as x→ y. �

1.4.1. Examples. We list here a few examples of well-known orthogonal polynomial families
and their associated recurrence coefficients. For general weight functions computing these
coefficients is a difficult problem with no panacea. We will see later how the coefficients for
these families are computed analytically.

• Legendre polynomials – We define

w(x) =

{
1, x ∈ [−1, 1]
0, x ∈ R\[−1, 1]

(6a)

The associated family of polynomials {pn}∞n=0 have recurrence coefficients given by

b0 =
1√
2
, an = 0, bn =

n√
4n2 − 1

, n ∈ N(6b)

• Hermite polynomials – We define

w(x) = exp(−x2), x ∈ R(7a)

The associated family of polynomials {pn}∞n=0 have recurrence coefficients given by

b0 =
1

π1/4
, an = 0, bn =

√
n

2
(7b)

2. Direct consequences of the three-term recurrence

2.1. Derivatives. Differentiation of (3) yields a recurrence formula for derivatives of or-
thogonal polynomials:

xp′n(x) = bnp
′
n−1(x) + an+1p

′
n(x) + bn+1p

′
n+1(x)− pn(x), n ∈ N,(8)

with the initial conditions p′0 = 0 and p′1 = c1,1 = 1/(b0b1). This procedure can be repeated,
resulting in a general recurrence formula for the d’th derivative of pn:

xp(d)n (x) = bnp
(d)
n−1(x) + an+1p

(d)
n (x) + bn+1p

(d)
n+1(x)− dp(d−1)n (x), n ≥ d,

p
(d)
d (x) =

d!∏d
j=0 bj

,

p
(d)
j (x) = 0, j < d.

Note that this yields a simple algorithm to compute derivatives of orthogonal polynomials
of any order: one needs only first compute lower-order derivatives first.
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2.2. Alternative normalizations. One will encounter many normalizations for orthogo-
nal polynomials in the literature. Given a sequence of positive numbers {hn}∞n=0, we can
define a new sequence of polynomials,

qn = hnpn.

The polynomial family {qn}∞n=0 is still an L2
w-orthogonal family, but no longer orthonor-

mal in general. A simple exercise shows that these new polynomials satisfy a three-term
recurrence relation whose coefficients can be expressed in terms of the original coefficients
(an, bn) for n ≥ 1:

xqn(x) = An+1qn(x) +Bn+1qn+1(x) + Cn+1qn−1(x),

An+1 = an+1, Bn+1 = bn+1
hn
hn+1

, Cn+1 =
bnhn
hn−1

.

The reverse map may also computed so that, given (An, Bn, Cn)n≥1 and h0, one may com-
pute the orthonormal recurrence coefficients,

an = An, bn =
√
BnCn+1, n ∈ N,

and b0 = 1/p0 = h0/q0. The normalization coefficients can likewise be recovered sequen-
tially:

hn = hn−1

√
Cn+1

Bn
.

2.3. Affine mappings. Let w(x) be a weight function with an associated orthonormal
polynomial family {pn}n∈N0 and known recurrence coefficients (an, bn). Suppose we are
given a bijective affine map A : R→ R of the form

A(x) = bx+ a, a, b ∈ R,

where a and b are arbitrary (b 6= 0) but fixed. It is frequently desireable to generate a new
sequence of polynomials that are orthonormal under the same weight function composed
with A, i.e., to find polynomials {πn}∞n=0 satisfying∫

πn(x)πm(x)w(A(x))dx = δm,n, m, n ∈ N0.(9)

As usual, finding recurrence coefficients is the goal so that we can perform computations
with the πn. Since the πn are orthonormal polynomials, then they have their own set of
recurrence coefficients (αn, βn)n∈N:

xπn(x) = βn+1πn+1(x) + αn+1πn(x) + βnπn−1(x), n ∈ N,(10)

with π0 ≡ 1/β0. The goal is to compute the unknown (αn, βn) recurrence coefficients for
πn from the known (an, bn) recurrence coefficients for pn. As before, β0 has an explicit
definition:

β20 =

∫
w(A(x))dx

u=A(x)
=

1

|b|

∫
w(u)du =

b20
|b|
,
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which yields β0 = b0/
√
|b|. To determine the rest of the recurrence coefficients, we first

observe that ∫
pn(x)pm(x)w(x)dx = δm,n

m (x = A(u))

|b|
∫
pn(A(u))pm(A(u))w(A(u))du = δn,m.

Since A is affine, then pn(A(x)) is a polynomial of degree n. Thus, if we define

πn(x) :=
√
|b|(sign b)npn(A(x)),

then {πn}n∈N0 satisfies (9) and has positive leading coefficient. We now determine which
recurrence equation the πn satisfy. Evaluating (3) at x← A(x), we have

(bx+ a)pn(A(x)) = bn+1pn+1(A(x)) + an+1pn(A(x)) + bnpn−1(A(x)),

xpn(A(x)) =
bn+1

b
pn+1(A(x)) +

an+1 − a
b

pn(A(x)) +
bn
b
pn−1(A(x))

Multiplying the last equation above by
√
|b|(sign b)n and using |b| = b sign b = b/(sign b) for

b 6= 0, we have

xπn(x) =
bn+1

|b|
πn+1(x) +

an+1 − a
b

πn(x) +
bn
|b|
πn−1(x)

By matching the above equation with (10), we conclude:

β0 =
b0√
|b|
, βn =

bn
|b|

αn =
an − a
b

, (n ∈ N).(11)

We have therefore shown the following result.

Theorem 2.1. Assume w(x) is a weight function with an orthonormal polynomial family
{pn}n∈N0 and recurrence coefficients (an, bn). Let A(x) = bx + a be an invertible affine
map (a ∈ R, b ∈ R\{0}). If πn are the unique polynomials with positive leading coefficient
that are orthonormal under w(A(x)), then they satisfy the three-term recurrence (10) with
coefficients αn and βn given by (11).

As an example, we consider the problem of computing recurrence coefficients for the so-
called shifted Legendre polynomials. These are polynomials πn that satisfy the orthogonality
relation ∫ 1

0
πn(x)πm(x)dx = δm,n.

That is, they are polynomials orthogonal under the weight function ω(x),

ω(x) =

{
1, x ∈ [0, 1]
0, x ∈ R\[0, 1]

Note that ω(x) can be expressed as the composition of w(x) for Legendre polynomials with
an affine map. Letting w(x) be as in (6a), we have

ω(x) = w(A(x)), A(x) = 2x− 1.

Therefore, let b = 2, a = −1 be the coefficients of the affine map A. Since the Legendre
polynomials have recurrence coefficients (an, bn) defined in (6b), then by theorem 2.1 the
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shifted Legendre polynomials satisfy a three-term recurrence relation of the form (10) with
coefficients

αn =
an − a
b

=
1

2
, βn =

bn
|b|

=
n

2
√

4n2 − 1
,

for n ≥ 1, with β0 = b0/
√
|b| = 1

2 .

2.4. General connection coefficients. Let w(x) be a weight function with orthonormal
polynomial family {pn}n∈N0 and recurrence coefficients (an, bn). Let ω(x) be another weight
function with orthonormal polynomial family {πn}n∈N0 and recurrence coefficients (αn, βn).
There is a unique triangular array of numbers dn,j defined as

pn(x) =

n∑
j=0

dn,jπj(x)(12)

These numbers are called connection coefficients. Connection coefficients between two poly-
nomial families can be computed using the recurrence coefficients from both families. Note
that

p0 = 1/b0, π0 = 1/β0 =⇒ d0,0 =
β0
b0
.(13)

For convenience in what follows we define dn,j outside the triangular constraints 0 ≤ j ≤ n
to be 0:

d−1,j = 0, (j ≥ −1), dn,j = 0, (j > n)

We use the recurrence relations for the families to express dn+1,j in terms of dn,j and dn,j−1.
First note from (12) that

dn,j = 〈pn, πj〉ω .(14)

Now multiplying (12) by xπk and integrating with respect the weight ω(x), we have

〈xpn, πk〉ω =
n∑

j=0

dn,j 〈xπj , πk〉ω ,

⇓ (three-term recurrence)

〈bn+1pn+1 + an+1pn + bnpn−1, πk〉ω =
n∑

j=0

dn,j 〈βj+1πj+1 + αjπj + βjπj−1〉ω

Using the L2
ω-orthogonality of the πj and (14), the above results in the equation

bn+1dn+1,k = −an+1dn,k − bndn−1,k +
n∑

j=0

dn,j [βj+1δj+1,k + αj+1δj,k + βjδj−1,k] ,
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where δj,k is the Kronecker delta function. For n ≥ 0, we can now express dn+1,k in terms
of dn,k and dn−1,k:

dn+1,0 =
1

bn+1
[(α1 − an+1)dn,0 + β1dn,1 − bndn−1,0] ,

dn+1,k =
1

bn+1
[(αk+1 − an+1)dn,k + βkdn,k−1 + βk+1dn,k+1 − bndn−1,k] , 1 ≤ k ≤ n− 1

dn+1,n =
1

bn+1
[(αn+1 − an+1)dn,n + βndn,n−1] ,

dn+1,n+1 =
βn+1

bn+1
dn,n,

Pairing the equations above with the n = 0 initial condition (13) yields a simple algorithm
for computing the connection coefficients in (12).

2.5. The canonical connection. It is occasionally helpful to have coefficients for an ex-
pansion of pn in monomials. The goal of this section is to compute these coefficients in
terms of the recurrence coefficients for the orthonormal family. We define these monomial
expansion coefficients as the triangular array of numbers cn,j defined as

pn(x) =
n∑

j=0

cn,jx
j ,(15)

and refer to this equality the connection to the canonical (monomial) basis. For n = 0, we
have c0,0 = p0 = 1/b0, and for convenience define c−1,j = 0 for all j. A manipulation of the
three-term recurrence relation (3) yields

pn+1(x) =
1

bn+1
[(x− an+1)pn(x)− bnpn−1(x)] ,

and using (15) we obtain

pn+1(x) =
1

bn+1

[
(−an+1cn,0 − bncn−1,0)x0 + cn,nx

n+1 + (cn,n−1 − an+1cn,n)xn

+
n−1∑
j=1

(−an+1cn,j − bncn−1,j + cn,j−1)x
j
]
.

This therefore provides the following recurrence for computing the monomial expansion
coefficients cn,j from the recurrence coefficients. Start with the initial conditions:

c0,0 = 1/b0,

c1,1 = c0,0/b1, c1,0 =
1

b1
(−a1cn,0) ,

and use the following recurrence to compute cn+1,j from cn,j and cn−1,j :

cn+1,j =


(−an+1cn,0 − bncn−1,0)/bn+1, j = 0

(cn,j−1 − an+1cn,j − bncn−1,j)/bn+1, 1 ≤ j ≤ n− 1
(cn,n−1 − an+1cn,n)/bn+1, j = n

cn,n/bn+1, j = n+ 1
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Note in particular that we have an explicit form for the leading coefficients cn,n of pn:

cn,n =
1∏n

j=0 bj
, pn(x) = cn,nx

n + · · ·(16)

The related expansion that accompanies (15) is

xn =
n∑

j=0

Cn,jpj(x).(17)

First we note that the arrays {cn,j}n,j and {Cn,j}n,j are related. Define N ×N matrices C
and c with entries:

(C)n,j = Cn,j , (c)n,j = cn,j , 0 ≤ j ≤ n ≤ N − 1

Now let x ∈ R be arbitrary and note that
p0(x)
p1(x)

...
pN−1(x)

 = c


x0

x1

...
xN−1

 ,


x0

x1

...
xN−1

 = C


p0(x)
p1(x)

...
pN−1(x)

 .

Thus, C = c−1 and this provides one way to compute C. For completeness, we provide
another strategy that uses a recurrence formula to compute the entries of C.

First we note that through explicit computation we have

C0,0 = b0, C1,0 = a1b0, C1,1 = b0b1

Subsequently, we compute

Cn,j
(17)
= 〈xn, pj〉w =

〈
xn−1, xpj

〉
w

(3)
= bj+1

〈
xn−1, pj+1

〉
w

+ aj+1

〈
xn−1, pj

〉
w

+ bj
〈
xn−1, pj−1

〉
w

= bj+1Cn−1,j+1 + aj+1Cn−1,j + bjCn−1,j−1,

which provides a recursion that can be used to compute the coefficients Cn,j .

2.6. Derivative expansions. We consider the task of computing the coefficients c
(d)
n,j sat-

isfying

p(d)n (x) =

n−d∑
j=0

c
(d)
n,jpj(x).(18)

As before, our strategy for a fixed d will entail iteration over the index n. First we note
from (16) that

p
(d)
d =

d!∏d
j=0 bj

, p(d)n = 0, (n < d).

Noting from (18) that c
(d)
n,j =

〈
p
(d)
n , pj

〉
w

, this provides the starting condition

c
(d)
d,0 =

d!∏d
j=1 bj

, c
(d)
n,j = 0, (d > n)(19)
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Thus for n ≥ d we have〈
xp(d)n , pj

〉
w

(8)
= bn+1c

(d)
n+1,j + an+1c

(d)
n,j + bnc

(d)
n−1,j − dc

(d−1)
n,j ,〈

xpj , p
(d)
n

〉
w

(3)
= bj+1c

(d)
n,j+1 + aj+1c

(d)
n,j + bjc

(d)
n,j−1.

These two expressions must be equal, so setting the right-hand sides to be equal and solving

for c
(d)
n+1,j yields the iteration

c
(d)
n+1,j =

1

bn+1

[
bj+1c

(d)
n,j+1 + (aj+1 − an+1)c

(d)
n,j + bjc

(d)
n,j−1 − bnc

(d)
n−1,j + dc

(d−1)
n,j

]
Therefore, to compute the numbers c

(d)
n,j , one must first have c

(d−1)
n,j and use the initial

conditions (19). Subsequently, one can iterate on n via the above equation. Computing the
initial d = 0 values is straightforward since

c
(0)
n,j = 〈pn, pj〉w = δn,j .

3. Quadrature and zeros of orthogonal polynomials

There is a very strong characterization of roots of orthogonal polynomials.

Theorem 3.1. Let {pn}n∈N0 be a sequence of orthogonal polynomials. Then, for all n ≥ 1:

(1) pn has n real-valued roots
(2) The roots of pn are all simple
(3) pn and pn+1 have no common roots

Proof. Fix n ≥ 1. Suppose that pn has exactly r real-valued roots, x1, . . . , xr, 0 ≤ r ≤ n−1.
Consider the polynomial

q(x) = pn(x)
r∏

j=1

(x− xj)

Then q(x) is a non-trivial polynomial that is single-signed on R. Therefore:

0 6=
∫
q(x)w(x)dx =

∫
pn(x)

r∏
j=1

(x− xj)w(x)dx =

〈
pn,

r∏
j=1

(x− xj)

〉
w

= 0,

where the last equality holds by orthogonality of pn and since r < n. This contradiction
shows that r = n, and therefore pn has exactly n real-valued roots.

We can similarly show that all roots of pn are simple. Suppose that there is a repeated
root, x0 of pn. I.e.,

pn(x) = κn(x− x0)2
n−2∏
j=1

(x− xj).

Then consider the polynomial

q(x) = pn(x)

n−2∏
j=1

(x− xj) = κn(x− x0)2
n−2∏
j=1

(x− xj)2.

Since q is again single-signed on R, the same argument as above shows that we can again
achieve a contradiction. Thus, pn cannot have a repeated root, so all its roots must be
simple.
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Finally, assume pn and pn+1 share a root, say x0. By the Christoffel-Darboux identity:

n−1∑
j=0

pj(x0)pj(x) =
n∑

j=0

pj(x0)pj(x) = bn+1
pn+1(x0)pn(x)− pn(x0)pn+1(x)

x0 − x
= 0,

for all x 6= x0. Similarly, (4b) can be used to show the same result for x = x0. Therefore,
we have

n−1∑
j=0

pj(x0)pj(x) = 0, x ∈ R.

Since the pj are a linearly independent basis, this implies that pj(x0) = 0 for j = 0, . . . , n−1.
But p0(x0) = 0 cannot happen. Thus, pn and pn+1 cannot share a root. �

3.1. Near-optimal quadrature. Apart from curiosity, there appears to be no reason at
face value to investigate roots of orthogonal polynomials. However, it turns out that zeros of
such functions are roots of excellent quadrature rules. We first introduce some terminology.

Definition 3.1. An n-point quadrature rule is a set of nodes and weights (xj , wj)
n
j=1. The

node polynomial associated to a quadrature rule is the monic polynomial

q(x) :=
n∏

j=1

(x− xj).

We assume, without loss, that the nodes {xj}j of a quadrature rule are distinct, and that
all weights are non-zero. (For if nodes are repeated, we can merge identical nodes and sum
their corresponding weights, and if weights are zero we can simply ignore any contribution
associated to that node.)

Quadrature rules are built to approximate integrals, i.e., given some weight w(x),
n∑

j=1

wjf(xj) ≈
∫
f(x)w(x)dx,(20)

where the meaning of ≈ depends on the kind of quadrature rule. Quadrature rules that
exactly integrate polynomials of as high a degree as possible are particularly useful. In
particular given a weight function w(x), we call a quadrature rule (xj , wj)

n
j=1 accurate to

order k if ∫
p(x)w(x)dx =

n∑
j=1

p(xj)wj , p ∈ Pk

A first result characterizes the maximum order of accuracy of quadrature rules.

Proposition 3.1. Suppose an n-point quadrature rule is accurate to order k. Then k ≤
2n− 1.

Proof. Suppose the quadrature rule can exactly integrate polynomials of degree 2n and less.
Then q2(x) is a nontrivial polynomial that vanishes on the quadrature nodes, where q is the
node polynomial. Thus,

0 <

∫
q2(x)w(x)dx =

n∑
j=1

q2(xj)wj = 0,

Thus, we have achieved a contradiction since the quadrature rule cannot accurately integrate
this degree-2n polynomial. �
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Therefore, an n-point quadrature can be called optimal if it exactly integrates polynomials
of degree 2n− 1 and less. Before characterizing optimal quadrature rules, we consider the
following well-known characterization of univariate polynomial interpolation.

Lemma 3.1 (Polynomial interpolation unisolvence). Let C(R) denote the space of contin-
uous real-valued functions on R. If {x1, . . . , xn} are distinct points on R, then there is a
unique interpolation operator In : C(R)→ Pn−1 such that

[Inf ] (xj) = f(xj), j = 1, . . . , n, f ∈ C(R).

The interpolant Inf is unique and can be expressed as

Inf =
n∑

j=1

f(xj)`j(x), `k(x) =
n∏

k=1
k 6=j

x− xk
xj − xk

.

The polynomials {`k}nk=1 are the cardinal Lagrange polynomials associated to the nodal set
{x1, . . . , xn}, and satisfy `k(xj) = δk,j.

In light of the above result, one strategy for approximating an integral given a finite
number of function evaluations is to first construct an interpolant, and then to exactly
integrate the interpolant. This generates an interpolatory quadrature rule.

Corollary 3.1. Let {x1, . . . , xn} be distinct, defining cardinal Lagrange polynomials `j.
Define weights

wj =

∫
`j(x)w(x)dx.(21a)

Then the quadrature rule (xj , wj)
n
j=1 satisfies∫

p(x)w(x)dx =
n∑

j=1

wjp(xj), p ∈ Pn−1.(21b)

A quadrature rule whose weights satisfy (21a) is called an interpolatory quadrature rule. A
quadrature rule satisfies (21a) if and only if it satisfies (21b).

The result above shows that any n-point quadrature rule whose order of accuracy greater
than or equal to n − 1 must be interpolatory. The condition that separates interpolatory
rules of accuracy n− 1 from those of higher accuracy is related to orthogonality properties
of the node polynomial.

Theorem 3.2. Given an n-point quadrature rule (xj , wj)
n
j=1 and an integer m satisfying

0 ≤ m ≤ n, the following two statements are equivalent:

(1) The quadrature rule has order of accuracy n− 1 +m.
(2) The quadrature rule is interpolatory, and the node polynomial q satisfies∫

q(x)p(x)w(x)dx = 0, p ∈ Pm−1,(22)

where P−1 is the empty set. The relation (22) is called a quasi-orthogonality relation.

Proof. Suppose the quadrature rule has order of accuracy n− 1 +m. By Corollary 3.1, this
rule must be interpolatory. Now if p ∈ Pm−1 is arbitrary, then qp ∈ Pn−1+m. Thus, we have∫

q(x)p(x)w(x)dx =
n∑

j=1

q(xj)p(xj)wj = 0,
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where the last equality holds since q is the node polynomial so that q(xj) = 0.
Now assume that the quadrature rule is interpolatory and the node polynomial satisfies

(22). Let p ∈ Pn−1+m be arbitrary. By Euclidean division of polynomials, we can express
p in terms of the node polynomial q via the relation

p = qQ+R, Q ∈ Pm−1, R ∈ Pn−1.

Note that the quadrature rule exactly integrates R since it is interpolatory. Thus,∫
R(x)w(x)dx =

n∑
j=1

R(xj)wj .

The quasi-orthogonality condition implies that∫
q(x)Q(x)w(x)dx = 0 =

n∑
j=1

q(xj)Q(xj)wj ,

where the second equality holds since q(xj) = 0. Therefore, for any p ∈ Pn−1+m,∫
p(x)w(x)dx =

∫
q(x)Q(x)w(x)dx+

∫
R(x)w(x)dx

=
n∑

j=1

q(xj)Q(xj)wj +
n∑

j=1

R(xj)wj =
n∑

j=1

p(xj)wj .

�

Corollary 3.2 (Guassian quadrature). If {x1, . . . xn} are the roots of the degree-n L2
w

orthogonal polynomial pn and weights wj are defined as (21a), then the resulting quadrature
rule has optimal order of accuracy 2n − 1. This rule is unique, and is called the Gauss
quadrature rule.

3.2. Gaussian quadrature weights. The weights wj of the Gauss quadrature rule defiend
in Corollary 3.2 can be explicitly evaluated in terms of the corresponding orthonormal
polynomials.

Theorem 3.3. Let (xj , wj)
n
j=1 be an n-point Gaussian quadrature rule. Then

wj =
1

bnp′n(xj)pn−1(xj)
=

1∑n−1
k=0 p

2
k(xj)

, j = 1, . . . , n.(23)

Proof. Recall that `j ∈ Pn−1 is the jth cardinal Lagrange polynomial, satisfying `j(xk) =
δj,k. Since the {xj}j are the roots of pN , then there is a constant C such that

`j(x) = C
pn(x)

x− xj
.(24)

Enforcing `j(xj) = 1 and with L’Hôpital’s rule, one can verify that this constant is C =
1/p′n(xj).

Now consider the Christoffel-Darboux formula (4a) with y ← xj :

n−1∑
k=0

pk(x)pk(xj) = bn
pn(x)pn−1(xj)− pn(xj)pn−1(x)

x− xj
= bn

pn(x)pn−1(xj)

x− xj
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If we integrate both sides of this equation against w(x), we obtain

1 =

∫
p20w(x)dx = bnpn−1(xj)

∫
pn(x)

x− xj
w(x)dx

(24)
= bnpn−1(xj)p

′
n(xj)

∫
`j(x)w(x)dx

(21a)
= wjbnpn−1(xj)p

′
n(xj),

which proves the first equality in (23). The second equality is due, again, to the Christoffel
Darboux identity (4b),

n−1∑
k=0

p2k(xj) = bn
[
p′n(xj)pn−1(xj)− pn(xj)p

′
n−1(xj)

]
= bnp

′
n(xj)pn−1(xj).

�

The relation (23) immediately implies that the Gaussian quadrature rule has positive
weights.

3.3. Computation of Gaussian quadrature rules. Gaussian quadrature rules are de-
sirable beause of their high order of accuracy. However, the characterization in Corollary
3.2 requires that we compute roots of polynomials. This is, in general, a difficult and nu-
merically ill-conditioned problem. However, that the polynomials whose roots we seek is an
orthogonal polynomial provides a strong characterization that allows for stable and efficient
computation. This characterization is the main topic of this section.

Definition 3.2. Given recurrence coefficients (aj , bj)j≥1 and a positive integer n, the n×n
Jacobi matrix is the symmetric, tridigonal matrix defined as

Jn =


a1 b1
b1 a2 b2

b2 a3 b3
. . .

. . .

bn−1 an


The main result of this section is that n-point Gaussian quadrature rules can be derived

from spectral information of Jn.

Theorem 3.4. Let (aj , bj)j≥1 and b0, be the recurrence coefficients associated to the weight
function w(x). For any n ≥ 1, consider the real-valued eigenvalue decomposition of Jn:

Jn = V ΛV T ,

where Λ is a diagonal matrix containing the eigenvalues of Jn, and the columns of V are
the corresponding orthonormal eigenvectors {vj}nj=1,

Λ =


λ1

λ2
. . .

λn

 , V =

 | | |
v1 v2 · · · vn
| | |

 =


v1,1 v2,1 · · · vn,1
v1,2 v2,2 · · · vn,2

...
...

...
v1,n v2,n · · · vn,n


The eigenvalues {λj}nj=1 of Jn are all simple and are equal to the roots of pn, hence are
the nodes of the n-point Gaussian quadrature rule. Letting w1, . . . , wn be the weights of the
n-point Gaussian quadrature rule, then

wj = b20v
2
j,1.(25)
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Proof. Define p(x) ∈ Rn as

p(x)T = (p0(x) p1(x) · · · pn−1(x))T ∈ Rn.

Stacking the three-term recurrence relation (3) for index j = 0, 1, . . . , n − 1, yields the
vector-valued equality

xp(x) = Jnp(x) + bnpn(x)en, en =


0
0
...
0
1

 ∈ Rn.

Thus xj is an eigenvalue of Jn if and only if pn(xj) = 0, showing that the spectrum of Jn
equals the roots of pn. Since pn has n distinct roots, then the n × n matrix Jn must have
all simple eigenvalues.

To prove the statement about the weights, note that if x = xj is a root of pn, then

xjp(xj) = Jnp(xj),

so that p(xj) is an eigenvector of Jn associated to eigenvalue xj . Therefore, the (real-valued)
eigenvector vj satisfies vj = ±p(xj)/‖p(xj)‖2. We therefore have

vj,1 = ± p0
‖p(xj)‖2

= ± p0√∑n−1
k=0 p

2
k(xj)

(23)
= ±p0

√
wj

Combining this with the relation p0 = 1/b0 yields (25). �

The characterization of Gaussian nodes and weights provided by the previous theorem
elegantly characterizes a strategy for computing Gauss quadrature rules: compute the spec-
trum of the (sparse) symmetric tridiagonal matrix Jn. Since the numerical computation of
such quantities is efficient and stable, this recipe for computing Gaussian rules is perhaps
the most-used procedure for computing Gaussian quadrature nodes and weights.

4. Computing approximations with orthogonal polynomials

One of the major tasks in spectral methods is formation of an approximating polynomial
to a given function u(x). Typically, we assume that u(x) is given, or can be evaluated easily
at arbitrary locations x. This section concerns construction of approximations from or-
thogonal polynomials. Precisely, we will consider two approaches, interpolatory procedures
and quadrature procedures. In some situations, these two procedures result in identical
approximations.

The approximation techniques we consider in this section both fall under the following
category: suppose we have M point-evaluations {u(xj)}Mj=1 of u, and we seek to compute
the approximation

u(x) ≈ uN (x) :=

N−1∑
j=0

ûjpj(x),(26)

where {pj}j≥0 is an orthonormal polynomial family. When solving differential equations,
we will typically manipulate and operate on uN instead of u. The approximation defining



16 UNIVERSITY OF UTAH: MATH 5750/6880

uN can be recast as a linear algebra condition,

V û ≈ u, û =

 û0
...

ûN−1

 , u =

 f(x1)
...

f(xM )

 ,(27)

where the matrix V is a Vandermonde-like matrix,

V =


p0(x1) p1(x1) · · · pN−1(x1)
p0(x2) p1(x2) · · · pN−1(x2)

...
...

...
p0(xM ) p1(xM ) · · · pN−1(xM )

 ∈ RM×N .

Clearly, the feasibility of enforcing equality in (27) depends on the relation of M to N .
We will discuss in the next sections particular strategies for computing vectors û from (27)
that define approximations uN of the form (26). Later, we will see how to mathematically
analyze the expected error committed by such approximations.

4.1. Interpolatory constructions. When M = N and the nodes xj are distinct points,
then Lemma 3.1 implies that exact satisfaction of (27) can be achieved. In particular, the
matrix V ∈ RN×N is invertible, and so the unique solution is

û = V −1u,(28)

which defines the approximation (26). The computational tractibility of this approach is
typically limited by (a) the stability (conditioning) of the matrix V , and (b) the size of N .
Inverting matrices typically requires O(N3) operations, which can be expensive when N is
large.

More concerning is the stability issue. For a square matrix V , the condition number κ(V )
of V is defined as

κ(V ) :=
σmax(V )

σmin(V )
,

where σmax(·) and σmin(·) are, respectively, the maximum and minimum singular values
of an input matrix. A standard rule-of-thumb in numerical analysis is that, in finite-
precision arithmetic, one loses approximately log10 κ(V ) digits of accuracy when using (28)
to compute û. If the nodes xj are chosen poorly, then κ(V ) can be quite large, sometimes
growing exponentially with N .

At this level of generality we can say very little about accuracy of interpolatory ap-
proaches, and can only provide a consistency result that is immediate from Lemma 3.1.

Lemma 4.1. For interpolatory approaches on distinct nodes, if u ∈ PN−1, then uN = u.

4.2. Quadrature constructions. We consider two types of quadrature constructions: di-
rect methods, and least-squares methods. Direct methods are applicable for any relation-
ship between M and N , whereas least-squares methods require M ≥ N . We assume in this
section that we have access to an M -point quadrature rule (xj , wj)

M
j=1.

Direct methods use the following approach: we seek to compute the coefficients ûj in
(26). Taking the definition of uN in that equation, we have

ûj = 〈uN , pj〉w ≈ 〈u, pj〉w ≈
M∑
k=1

wku(xk)pj(xk),(29)
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where the second ≈ comes from the desideratum (20). Thus, one way to define the ûj
coefficients is as the right-hand side of the above expression; we say that the coefficients
defined in this way are computed via a direct qudarature procedure. Rewriting this in terms
of linear algebra, we have

û = V TWu, W =


w1

w2

. . .

wM

 .(30)

We see that this is a relation that is dual to V û = u, but the two systems are not directly
related in general. One suspects that the accuracy of this approach, even simply in terms
of consistency results, depends heavily on the order of accuracy of the quadrature rule.

Lemma 4.2. Suppose u ∈ PN−1. The direct quadrature approach with M quadrature points
recovers uN = u if the quadrature rule is accurate to order 2N − 2.

The proof comes directly from the chain (29): Both ≈ relations become equality if u is
a polynomial and if the quadrature rule can accurately integrate upj ∈ P2N−2. Note that,
from Proposition 3.1, direct quadrature approaches can be consistent on PN−1 in the sense
of Lemma 4.2 only if M ≥ N , but this relation between M and N is not sufficient for
consistency. However, direct quadrature can be applied to compute some approximation
uN no matter the relation between M and N .

A second quadrature approach is least-squares: given the rectangular system V ũ = u,
we seek the solution ũ in the least-squares sense with respect to the quadrature rule. I.e.,
we seek coefficients ûj that minimize the residual

M∑
j=1

wj (uN (xj)− u(xj))
2 =

M∑
j=1

wj

(
N−1∑
k=0

ûkpk(xj)− u(xj)

)2

.

In linear algebraic terms, we seek the solution to the problem

argmin
û∈RN

∥∥∥√W (V û− u)
∥∥∥
2
,(31)

where W is the diagonal matrix defined in (30). Note that this is a weighted least-squares
problem. We first codify some well-known conditions that ensure existence of a unique
solution to this problem.

Lemma 4.3. There is a unique solution to (31) for all u if and only if M ≥ N .

Proof. If a unique solution to (31) always exists, then
√
WV ∈ CM×N cannot have a kernel,

which means that M ≥ N . Now instead assume M ≥ N . Recall from Definition 3.1 that
all quadrature rules have distinct nodes and non-zero weights. If M ≥ N , then all columns
of V are linearly independent (by Lemma 3.1), so that V has full (column) rank. Since all

weights are non-zero then W is full-rank, so that
√
WV has full (column) rank. Therefore

the least-squares problem has a unique solution. �

Note above that we need not assume positive weights, and the result above holds true
even with negative weights.
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4.3. Equivalences. For general function data u, the interpolatory approach (28), the di-
rect quadrature approach (30), and the least-squares method (31) all produce different
approximations. However, there are some simple situations in which they provide the same
approximation.

Proposition 4.1. If the quadrature rule (xj , wj)
M
j=1 is accurate to order 2N − 2, then

the direct quadrature method (30) and the least-squares approach (31) produce the same
approximation uN .

Proposition 4.2. If the quadrature rule (xj , wj)
M
j=1 has M = N points and is accurate to

order 2N − 2, then the interpolatory approach (28), the direct quadrature method (30), and
the least-squares approach (31) all produce the same approximation uN .


