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1 Introduction

The objective of this fourth project is to implement and study Hough Transform. Indeed, as we have
already studied in Project 2, extracting feature from images an mostly edge is an important and
challenging objective of image processing. In this assignment we will study how Hough transform
is aiming at extracting these edge features from various objects of an image. In this report we will
cover the theoretical presentation of the Hough Transform and some interesting points related to its
implementation. We will then provide results that we will present and analyse. We will try as much
as possible to compare the different methods and solutions we came up with. This report will firstly
present the Hough transform without considering the edge orientation and then considering it, so
we will compare both in a last part. We will finally end this report by showing the implementation
of the methods we discussed. Some of them were already implemented in previous assignments so
we are going to remind them briefly.

The implementation is also realized using MATLAB, and here are the related functions for this
project.

Note: The following MATLAB functions are associated to this work:

• select points.m : [x, y] = select points(InputImage)

• Hough transform 1.m : ReconstructedLinesImage = Hough transform 1(decrement, filtering)

• Hough transform 2.m : ReconstructedLinesImage = Hough transform 2(filtering)

Note: I used images that were provided and made all the other drawing or images so there is no
Copyright infringement in this work.

Note: Due to the implementation of Hough transform I made and the structure of images, thresh-
olding has been set up to be performed only on certain images. So when running the script, you
don’t have the choice of images because I set up thresholds to provides results according to certain
images.
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2 Theoretical presentation

In this first part, we are going to introduce and present Hough transform, the theory and the main
characteristics.

2.1 Hough Transform

Hough Transform is a technique invented by Paul Hough in 1962 to extract edge features from an
image. Hough transform can be described as a mapping function which convert a point of the Image
space into a line or a curve in Hough Space. Then, using some properties of Hough space we can
detect and identify some groups of pixels that share common properties such as being on a same
line or crossing set of lines, which will provide us the information required to draw these lines.

2.1.1 Image space parametrization

The image space is the space of all pixels belonging to a random input image where we want to
extract some features. A preprocessing step will be necessary to remove noise which will cause
issues. In this part, we will assume that we are in an ideal case with no noise.

In the image space, we work in a discrete raster defined with the Direct Orthonormal Cartesian
bi-dimensional space basis composed of the two vectors :

e1 =

(
1
0

)
and e2 =

(
0
1

)
(1)

So in such a basis a line or an edge is defined with the following affine equation:

y = ax+ b with

{
a = ∆y

∆x being the slope of the line

b being the y intercept
(2)

In the previous equation, the position values in the basis : (x, y) ∈ R2 are defined and well known,
but we ignore the values of the slope and the y-intercept of the line or edge between points. The point
of using Hough Transform is to create a new space where these two unknowns can be determined.

2.1.2 Hough space

Hough space is a parametric hybrid space. Indeed, it’s linked to the image but has no physical
reality compared to it. Hough space is composed of two parameters computed using the Polar bi-
dimensional space basis composed of the two polar vectors (er, eθ). We can of course express our
image position coordinates into this basis.{

x = rcos(θ)

x = rsin(θ)
with

{
r =

√
x2 + y2

θ = arctan(xy ), (x, y) ∈ R+2 (3)

Due to the discrete structure and the fact that we are using MATLAB numerical indexation of
arrays we will restrain the definition to strictly positives values of position coordinates.
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So we are going to associate to each point in the image space that we consider interesting or that
belong to an edge a sinusoid curve in Hough space using the following transformation:

ρ = xcos(θ) + ysin(θ) (4)

2.1.3 Illustrations

Hough transform has several interesting properties, even if in this case we restrain ourselves only to
straight lines. We are going to present, through examples we realized these properties and illustrate
what we presented before. So as we said before Hough transform maps a point of the image space
into a sinusoid curve in the Hough parametric space (ρ, θ).

Figure 1: Sinusoid in Hough parametric space associated to a point in the image space

The shape of the sinusoid is defined according to the position of the point regarding the origin of
the image from which the parameters are computed. Indeed if the point is far from the origin, the
curve is going to have a wider amplitude. On the other hand, the closer the point gets to the origin
the smaller become the amplitude. The position of the origin is an important aspect. Indeed if we
let the origin at (0, 0) points really far are going to have a very large amplitude, and we can have a
bigger Hough space. So in the previous picture and so is in the following, we moved the origin to
the middle of the vertical axis to have a centred sinusoid display.

Once we know that a point is mapped into a sinusoid curve we can easily do that for two points.
And as a matter of fact a very interesting property is going to be revealed because two points are
always aligned in the Image space.
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Figure 2: Sinusoid in Hough parametric space associated to two points in the image space

So as we can see on the previous picture, the two points are mapped into two curves that cross
each other twice due to the periodicity of the sinusoid functions. As we are working in Hough
parametric space, the coordinates are θ on the horizontal direction which vary from 0 to 360◦. The
most important point of Hough transform is hidden in the previous picture. Indeed, as we said the
curves cross each other, and this point has two coordinates in the Hough space which represent the
slope and the y-intercept that describe the line which connect the two points in the image space.
This property is going to be used later and generalize to a larger set of points composing edges or
lines but this is one of the fundamental properties of Hough transform.
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Figure 3: Sinusoid in Hough parametric space associated to three points in the image space

Let’s know present how we get back to the image space to create the line. Indeed, as we have
seen, thanks to this intersection point, we are able to determine the set (ρl, θl) that define the line.
So using this information we can compute the line in the image space using:

y =
−cos(θl)
sin(θl)

x+
ρl

sin(θl)
(5)
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Figure 4: Image space line associated to our maximum parameters in Hough space

As we can see the line perfectly matches the set of points we plotted to simulate an edge. We can
use this discussion to show another property of the Hough Transform which is robustness regarding
outliers. In fact because the line parameters are computed based on the ”maximum score” (vote
strategy described in the implementation section) it’s pretty insensitive to outliers. In our ideal
case, we can simulate the presence of noise creating outliers around our simulated edge.

Figure 5: Outliers influence
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As we can see if we have quite few outliers, this technique is fairly robust. But if the curves
appears to be defined by a ”divergent” set of point the Hough Transform won’t be able to figure the
line. I mean by divergent that there are more points considered around the line than points really
belonging to a close neighbourhood of it.

Another concern while looking at the previous picture is that having the slope and the y inter-
cept is not enough to define an edge. Indeed what we have is a line which is by definition infinite
while our edge is completely finite. So the challenge here will be to determine the limits of that
edge. In our case, due to the ideal nature of our example we can constrain the line between the
first and the last point defining the line. Which is the point with the lowest x-value and the biggest
x-value.

Figure 6: Final line with constrained length

And as we can see in this ideal case, we really have the line defined by the points we used. This
presentation was giving the basis of Hough transform in an ideal case, where we know and control
all aspects of the transform implementation, but as we are going to introduce and present later in
this document, it is harder than it appears previously.

Indeed, one of the challenge is the exact determination of the parameters of the lines which re-
lies on determining the point where most line curves and which is has the maximum score in Hough
parameter space.

2.2 Improvement

As we presented before the detection of maxima scores of the accumulator image is a serious chal-
lenge. It reminds of a previous issue we had in a previous assignment where we had to find a nice
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threshold value in a correlation image to locate the position of a template in an image. Here the
situation is pretty similar, indeed, we are looking for the location of maxima in an image with regard
to the surrounding area and false positive maxima. An illustration of this proximity between the
two situation is presented in the implementation section.

2.2.1 Image filtering

By using a Gaussian kernel as a filter to smooth the image we intend to create an image where we
reduce noise. Indeed, this will create a closely continuous evolution of values in Hough space. By
doing so we hope to be able to have a better detection of the local maxima in the image. Everything
done in this section rely on what has been presented about filtering and smoothing in project 2.

2.2.2 Decremental strategy

A solution to improve the accuracy to detect the most suitable values for the slope and the y-
intercept associated to each aligned set of points is to use the method presented by Gerig et al.
The idea here is to apply a second pass on the Hough space to remove a lot of useless parts of the
accumulator and preserve the local maxima that carry the information regarding the lines of the
original input image.

2.3 Two interesting functions

Another interesting point to make is related to the analysis of Hough parametric space. Indeed we
want to analyse it to determine and characterize the composition and the structure of the image
and then we want to extract some features of interest which happens to be, due to the incremental
technique, maxima of the image.

To perform the first task, analyse and characterise in Hough space we need to be able to distinguish
patterns. To do so we can rely on the use of the logarithm function which allow us to convert a
wide variation of values into a smaller one. This technique allow us to have a clearer representation
of the the parametric space. Here are some examples illustrating the previous statement.

Figure 7: Comparison between regular Hough space and the log space
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This aspect is only to be used as visual exploration, because it create a wider range of maximal
values than it should.

To perform the maximum detection, an other mathematical function can be used but in this case
to produce the opposite effect. Indeed in this case we want to be able to separate values from each
other and enhance contrast. To perform this task we can rely on the use of the exponential function,
which will convert a small variation into a big variation, which can be really powerful to increase
the variation between points and extract easily a set of maximum values using thresholding in the
parametric space. In the case of two lines in an image, as presented in the previous results of Hough
space, if we apply an exponential function on the regular space, we obtain two white dots, repre-
senting the stronger line, and if we lower a bit the threshold we can easily extract the 4 maximum
peaks presented before, because the difference with their neighbours is increased a lot so they can
be easily separated.

Figure 8: exponential function of Hough space

This procedure is just a simple way to increase the difference between points and try to make
relevant maxima pop out.

11



3 Hough Transform on images containing straight lines

3.1 Image Preprocessing

As we mentioned in the theoretical section, the goal of Hough Transform is in our case to detect lines
or edges. To do it in good conditions we need to use images where edges are pretty well defined. This
step is an important and required step for both methods we are going to study in this project. So
binary images obtained using simple thresholding can be excellent candidates. Another interesting
approach to use on more complex images where objects cannot be easily segmented using a single
threshold is to use a technique we already implemented in the second project: edge detection. We
will quickly introduce these two methods and how they work. The focus of this document being on
Hough transform, this step is just supporting it.

3.1.1 Thresholding

Thresholding is a simple image processing technique used to create binary images from a grayscale
image. We determine a threshold value and all the values below this threshold will be considered as
background and all the values above will be considered as being objects. Thresholding transfer func-
tion is a step function where the step occurs at the threshold value. Here is a result of thresholding
an image that we realized in project 1:

Figure 9: Threshold image of a brain CTscan

The previous image is here to illustrate the thresholding technique, due to its non linear shape
it’s not a good candidate for our line detection Hough transform.
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3.1.2 Edge detection

Edge detection is also an image processing technique used to identify areas where the gray level
has a strong and quick variation. The simple version of this technique relies on the computation of
the image gradient. To do so we rely on filtering techniques with a first or second order discrete
derivation kernel. More advanced technique exists and can produce more accurate and sharp results
such as the Canny method. Here is an example of edge detection using Sobel’s filter that we realized
in project 2.

Figure 10: Cameraman image filtered with a Sobel kernel of dimension 3

The previous image is also illustrating a result of edge filtering on an image, it is also not one of
the best candidate to perform our line detection using Hough transform.

3.1.3 Home-made binary images

We can also realize ourself some test images to present some interesting properties of Hough Trans-
form.

The first example is using a square and show the associated hough space:
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Figure 11: A rectangle and its associated Hough space

As we know, a rectangle is composed of four lines segments with two pairs of parallel segments
and pairs of orthogonal lines. These aspects can be found in the previous picture of Hough space
where we can see the parallel lines with two sets of maxima lying on top of each other at a constant
angular parameter. Due to the fact that in our previous source image the lines are perfectly lying
on the vertical and horizontal axis of the image it does make sense to have the angular parameter
value equal to 0◦ and 90◦. They correspond to the two first maxima sets of maxima on the hough
image. Then we also have maxima at 180◦ and 270◦ which are copies of the two previous sets due
to the mathematical properties of sinusoidal functions as being periodic with a period of 180◦.

Here is an other example of a common shape: a circle:

Figure 12: A circle and its associated Hough space

This previous image shows Hough space associated to a circle in the image space. As we know,
a circle can be defined with an infinite number of lines tangent to all of the points composing the
circle. This is why when computing the associated Hough space, we obtain a set of parallel sinusoid
that never cross. Indeed if we worked more on that image we could maybe extract one information,
the diameter of the circle which separate a set of parallel curves associated to two points of the
circled opposed to each other.
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The results we presented before were made with a strong focus on the study and presentation
of Hough Space with no intentions to detect points and back map them into lines in the input
image. Indeed, as we are going to see and as you may have noticed Hough space pictures are bigger
than expected and some modifications have been applied to produce the best results in this space.

3.2 Without edge orientation

In this first part we are going to present and analyse the results of our implementation when applied
on some specially made images or on some images that were provided.

3.2.1 Applying Hough Transform

In this part, we are focusing on applying Hough transform on images. We will in a first step compute
the associated Hough space as presented before and then compute the lines provided by the analysis
of this space. In a first part we are going to work on some of the images presented before and some
binary home-made images. This will allow us to work with images with special characteristics.

Let’s apply it to a simple binary image composed of two almost parallel lines. Here is our orig-
inal input image:

Figure 13: Two lines test image

We then compute the Hough space associated to the pixels where the intensity value is not equal
to 0. We obtain the following result using the log function and a :
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Figure 14: Hough space associated

As we can see here, I used the logarithm function to enhance the contrast on the Hough space
image. We can also notice that we don’t get the sinusoid shapes we have already see on the previous
images. It’s due to the fact that I previously was shifting the images so I can have a nice and
centred display. But the shape remains the same with two sets of almost vertically aligned points
representing our two parallel lines.
In a first time if we just threshold Hough space to extract the maxima we can already obtain some
interesting result. Indeed, if we just extract the maxima value and plot the line here is the result:

Figure 15: Reconstruction of the line associated to the maximum value
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If we lower the threshold value we can then detect the other line but as we can also see on the
following picture we detect another line which is absolutely not representing a line of our original
input image. We think that this line is a repetition of one of the previous, because of the common
slope, but the shifted.

Figure 16: Reconstruction of the lines of the original input image

This other line is due to the periodic behaviour of sinus functions we described before. The shift
is due to the y-intercept of the line which is computed using the angular parameter. So if we limit
ourselves to display only lines whose angular parameter lies in [0◦, 180◦] we finally obtain what we
were looking for:
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Figure 17: Reconstruction of the lines of the original input image

Now that we have shown in a very simple image that our implementation of Hough transform
was producing the expected results we are going to work on more complicated images, with more
lines with different slopes. In a first time we are again going to work on an home made test image.
It’s still a quite simple image but as we will discuss later it could be a result coming from some
processing techniques.

Figure 18: Many lines test image

Here is the associated computed Hough space:
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Figure 19: Log Hough space associated to our lines test image

As we can see on the previous images, if we look on the left half of the image, we have 6 appearing
areas of reddish color, showing that we have a maximum lying in the area. The challenge here is
that all maxima does not have the same intensity so we will have to threshold according to a lower
value to get all of them, but this could lead to detect more lines than what we expect. Let’s see
what we obtain:

Figure 20: Reconstruction of the lines of the original input image
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As we can see, our threshold value was low enough to detect at least all the lines of the input
image. But as we can also see, there are some other ”undesirable” lines due to an ”over detection”.
Having these lines is due, in my opinion, to the thresholding technique which keep some points of
high value and create thicker lines when back mapping them. Then we also have the shifted lines
we had before, because in this case to be able to have all the lines we need to cover the whole set
of theta values. This comes probably from our implementation which is not optimal and has some
issues to manage vertical lines, whose angle is set to 360◦. So the result is a bit cluttered, but we
will try to see if we can get rid of those drawbacks using the decremental technique.

Finally, before discussing the implementation of the decremental technique, we are going to ap-
ply our Hough transform to real images that we preprocessed before. This image has been provided
for this project, we processed it to extract the edges.

Figure 21: Processed image
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Figure 22: Regular and Log Hough space associated to the image

As we can see, the associated log Hough space is pretty cluttered and complicated to analyse,
this is why we also plotted the regular space. This image is really challenging because as we can
see on the two images above there are only few maxima pretty well defined, some of them are less
strong and some could be lost in the yellowish reddish area of the top of the picture. This is why
it’s complicated to have a complete and nice detection of all the edges of the image, mostly due to
the use of this basic threshold method. Here are some results.

Figure 23: Reconstruction of the lines of the original input image

If we lower the threshold value we detect a larger number of lines and increase the redundancy
because we have several computed lines associated to a single edge, due to the detection of neigh-
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bouring pixel of a maximum value.

Figure 24: Reconstruction of the lines of the original input image

Figure 25: An other example of principal lines detection
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3.2.2 Using decremental strategy

I don’t consider being a specialist, I’m just curious and I wanted to try to implement it to see how it
influences the results. So my implementation and results might not be the most accurate and nice.
If we apply a second pass in the Hough space where we decrement points that are different from the
maximum value as presented before, we are going to remove pixel of low values. Indeed this second
pass will allow us to keep only the maximum intensity areas which will hopefully help us to locate
and determine the coordinates of our maxima. Although this second pass reduces significantly the
amount of information and keep only maximal values areas, we still need to apply a threshold to
the values we consider to avoid having too much lines computed from remaining pixels. We apply
this strategy to our generated image.

Figure 26: Comparison between original and decremented Hough space

As we can see on the previous image, compared to the original hough space the amount of infor-
mation displayed has been reduced. But there is still a challenge to detect peaks. Indeed peaks are
proportional to the line length, the longer the line, the higher the peak because more lines will go
through a small neighbourhood. So detecting long lines will not be too challenging because they will
have the higher value for their peak. Regarding small line we still have some issues, this is why the
post decremental method thresholding is aiming at capturing those points associated to smaller lines.

If we apply it to the shape images we can also extract pretty well images even if my implemen-
tation might be wrong.
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Figure 27: Comparison between original and decremented Hough space for shapes image

Figure 28: Lines reconstruction using the decremented Hough Space

As we can see, it seems to be working but there might be some aspects to improve to have a
more accurate result.

3.2.3 Using smoothing of Hough Space

An other approach suggested in the project was to perform a Gaussian smoothing of Hough space
before performing peak detection. This technique is also working pretty well. Here are some results:
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Figure 29: Comparison between original and smoothed Hough space for shapes image

Figure 30: Lines reconstruction using the smoothed Hough Space

3.2.4 Other examples

While testing our implementation of Hough transform some concerned appeared. Indeed, the influ-
ence of two aspects appear to be important: the length of the edges and their thickness. Indeed the
larger are the two previous parameters the larger became the score in Hough space. So I wanted to
look deeper at those two previous aspects. I created two test images and use them in the pipeline
we have described before.
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Firstly let’s take a look at length influence. Indeed the longer the line the more pixel we have
so the higher should be the peak. Let’s see :

Figure 31: length test image

Figure 32: associated Hough space and decremented Hough space

As we can see, the filtered Hough space show two main areas, but as we predicted the only line
which is detected with a small threshold is in fact the longest line.
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Figure 33: Result

That’s maybe not an outstanding point but, it allows us to have a clearer interpretation of the
previous results we showed. And by the same process of the number of points composing lines
we obtain the exact same conclusion regarding the influence of the thickness of the line. Indeed
this has some consequences on the thresholding performed to extract other edges whose associated
maximum could be far lower than the absolute maximum associated to the most important edge.
So this is why a pre processing of the image might be necessary and maybe stronger than just an
edge detection with regard to the structures we care about and what we are looking for as a result.

Figure 34: Thickness comparison result
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3.3 Using edge orientation

In this section, we are going to improve the pipeline we presented before in order to reduce compu-
tation time. Indeed we saw that computing the Hough space associated to an image is a relatively
long operation, and could become longer if we combine it with the decremental technique for in-
stance. And as we know the computational expense of an algorithm might be a critical aspect in
some situation so looking to solutions to reduce it is always an interesting aspect.

3.3.1 Preprocessing

For the same reasons as presented before an edge detection pre processing is necessary on our input
images. But in order to improve what has been presented so far, we are also going to improve this
step. Indeed as we saw in project 2, by using a derivative based filter, it’s possible to extract the
gradient of an image and then compute its magnitude and orientation. At that time when doing
project 2, we assumed that the gradient orientation map was aiming at showing areas of constant
orientations and help to locate the discontinuities in the image. Now we are going to pre process
this image for the same reasons as we explained before and then use it to only accumulate a reduced
set of points instead of a full curve in Hough space.

Here is a result of this method applied to the Ohio runway picture provided for this work:

Figure 35: Gradient of the image, magnitude and angle maps

If we look at the angle map we can distinguished the straight lines representing the runway
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where the gradient angle stays the same because the gray level stays almost the same. We need to
process this image to extract two different kinds of gray levels representing the two different set of
lines composing the runway. The following image is representing presenting our angle map where
the angle belong to [−180◦, 180◦] and its associated absolute value map.

Figure 36: angle map and it’s absolute value

Now we can obviously say that the local orientation of the vertical line is associated to an angle
of 0◦ but we can mostly know that the other runway have an approximate angle of about 60◦. But
one important issue is that this image is really really noisy so really hard to analyse. We are going
to use this image with the gradient magnitude map in our pipeline to get for a given point on an
edge, the local value of the angle associated to it. Due to the noisy behaviour we described before
we will need to associate a tolerance to that angular value we get from the image. We also need to
convert the gray level contained in our angle map into a meaningful angular value in the previous
interval : [−180◦, 180◦]. To do so we use the following linear transformation (scaling):

θ(i, j) =
I(i, j)× 360◦

255
(6)

And finally before applying our pipeline we need to define a tolerance interval on the previous
computed angular value. On one hand, due to the noisy structure of the image it seems safe not to
consider a too small interval but on the other hand if this interval is too big we will end up with
the same issues has we had before with too many pixels of high score and without being able to
separate them. We are going to start with a ±5◦ interval around the value read in the angle map.
Here are some results:
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Figure 37: Log Hough parametric space using edge orientation

Figure 38: Reconstruction of detected lines

As we can see, with a very narrow confidence interval and a detection based on a small tolerance
of values to be local maximum we can reconstruct the two main lines of the image which are the
longest lines. If we reduce our tolerance value for maximum peak detection, due to the structure of
Hough space we detect the same lines again. So we tried to increase the number of detected lines
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by modifying the confidence interval for our angular value.
An important thing to notice here is that the main structure of the images are the two vertical lines
that define the runway, this is why our area of interest is located around 180◦. But other structures
appears due to the various possible orientations due to the other components of the image.

If we consider the shape image the result we get is more surprising:

Figure 39: Log Hough parametric space using edge orientation

Figure 40: Reconstruction of detected lines
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In the previous results, the log Hough space is only composed of few angular bands centred
mainly around the vertical and horizontal orientations. It might appear weird and may suggest
that this is a wrong result but the image is noise free so the gradient is defined everywhere with no
variations. So when we apply our maximum detection technique we obtain the major vertical lines.

We are going to apply this method to a last image. This image is a binary version of a picture
I took from down town SLC.

Figure 41: Binary input image

Figure 42: Smoothed Hough space and Hough space with reduced angular set
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Figure 43: Reconstruction of detected lines

This image is mainly composed of vertical lines from the building. As we can see on the com-
parison between the two Hough space images, when we use the edge orientation we can reduce
significantly the computation time.

3.4 Method Comparison

If we compare the two method we can notice a significant computation time reduction when using
the edge detection. Indeed, we do not compute any more the parameters for the whole θ range but
only for a reduced subset. The images we showed before illustrate the difference between the two
computations because the resulting Hough Space is less cluttered so it explains that it takes less
time to compute.

In terms of detection and line reconstruction using edge orientation is more accurate because it
allows to compute only angular subsets of interest. So time computation increase significantly with
image size but mostly with the number of edges and non background pixels.

We did have the ability to deeply studied the computational difference with accurate figures but
the averaging difference is that applying Hough Transform using edge orientation is about 4 times
faster than the other method. But this is really hard to express that because it depends of course
on the size of the image, the number of pixels resulting from thresholding. So it would require more
investigation to be able to quantify this aspect.

If we compare all the previous results we showed, we can see that they are pretty similar, the
only thing to differentiate them is the number of lines detected bases on the technique used, because
all them succeed in detecting the main edges.

33



3.5 Selective edge detection

This section is just an idea I got based on what we did before. If we know before applying Hough
transform on an image the edge orientation, why not applying a selective edge detection based on
statistical distribution of theses orientation. Indeed, the idea would consist in computing the gray
level histogram of the edge orientation map and then center our Hough transform on a interval of
values according to the gray level frequency. Here is an example.

Figure 44: Histogram of the shape image

Here is the histogram of the geometric shape image. We know that the angle angular interval
[−180◦, 180◦] is spread over [0, 255]. So based on that we can locate clusters of angles based on
frequency. There is a very important set of lines with a mid gray level which correspond to an angle
of 0◦ which represent all the vertical lines. Then, we have an other cluster with intensity value of
255 which represent angles with a 180◦ angle so that’s again vertical lines and that’s what is in the
structure of the image with mostly vertical lines. We can find a cluster at 193 which represents
lines with an horizontal orientation. So based on this statistic description of the image structure we
can tell what is the main orientation of lines and compute them according their orientation creating
cluster of lines.
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Figure 45: Extraction of vertical and horizontal clusters

On the previous picture we can clearly see all the characteristic crossing points aligned corre-
sponding to parallel lines. In fact what we presented before due to line length is at stake here,
because to have most of them we have to reduce the threshold and then we get more non local
maxima. Using the decremental technique might help. the presence of other gray level is due to
the presence of the circle that creates lines of all possible orientation because it has a theoretical
infinite number of tangent lines. and but we can still try to extract some diagonal lines using the
same approach. This part was just presenting a strategy that could be useful if we have the edge
orientation image and if we want to extract lines based on their frequency of appearance in the
image.
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4 Implementation

Here is a presentation of the techniques we used to realise this project, the function and method we
implemented to produce the images presented in the previous sections of this document.

4.1 The vote or score strategy

The vote strategy is an implementation technique we used to realize Hough transform. Indeed, we
showed that for each point of the image space we map it into a sinusoid into Hough parametric
space. We also said that all the points belonging to a common edge will have their sinusoid curve
intersecting at a same location. So in order to be able to determine this location, we decide to use
Hough space as an accumulator. Indeed, for each pixel where a sinusoid goes through we increment
the value of this pixel. Then to determine the crossing points we will process this accumulator image
we created.

for i=1:1:size(I2,1)

for j=1:1:size(I2,2)

if I2(i,j)==255

Y(k)=i;

X(k)=j;

for theta=1:1:360

rho = (X(k))*cosd(theta) + (Y(k))*sind(theta);

if rho <=orig(1)

rho=orig(1)-rho+1;

end

if rho > size(newI,1)

rho=size(newI,1);

end

newI(round(rho),round(theta)) = newI(round(rho),round(theta)) + 1;

end

k=k+1;

end

end

end

The accumulator used for Hough space is a kind of 3 dimensional histogram so we can illustrate it
with the following image:
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Figure 46: 3D view of Hough space

As we can see here, we have to detect exactly one pixel with the highest value per area, so we
can clearly see on the previous picture that thresholding is not going to be the best method to do
so.

4.2 Thresholding method

To perform this technique we just need to define a value as threshold. To illustrate, we can say that
it’s similar to define, in the previous image, a plane with this value as height. Everything above will
be considered as interesting, everything below will be ignored.

k=1;

for i=1:1:size(newI,1)

for j=1:1:size(newI,2)

if (newI(i,j)) >= threshold

maxi_rho(k)=i;

maxi_theta(k)=j;

k=k+1;

end

end

end

Note that the variables maxi rho and maxi theta are storing the coordinates in Hough space as
requested in question (c) to get the vote value we just need to read the value of the accumulator
associated to those variables. We did not write files containing those values, the line reconstruction
was used a sanity check to see if our detection was working.

37



4.3 Filtering method

Another technique which work pretty well is to use a Gaussian smoothing to reduce noise and value
dispersion allowing us to have a clearer image with hopefully clearer maxima.

weight=[1/16,2/16,1/16;2/16,4/16,2/16;1/16,2/16,1/16]

for i = ceil(size(weight,1)/2) :1: size(newI,1)-size(weight,1)+ceil(size(weight,1)/2)

for j = ceil(size(weight,2)/2) :1: size(newI,2)-size(weight,2)+ceil(size(weight,2)/2)

convol=0;

%compute convolution for the neighbourhood associated to the kernel

for a = 1:size(weight,1)

for b=1:size(weight,2)

convol = convol + (weight(a,b)*newI(i-a+ceil(size(weight,1)/2),j-b+ceil(size(weight,2)/2)));

end

end

newI(i,j)=convol;

end

end

And as we can see on the following picture of Hough space we end up with something a bit better:

Figure 47: Regular and 3D view of smoothed Hough space

4.4 Decremental method

In the first pass of the image, when we compute Hough space, we stored pixels which belong to
an edge. By doing so, we are able then to apply the second pass only based on those pixel which
will save some computational resources. Indeed, this worked because we where working with binary
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images where knowing if a pixel belongs or not to an edge is easy to determine. Then we re compute
the Hough sinusoid associated to those points and decrement their value in the accumulator if they
are below a certain value. It may not be the best implementation of this technique but it seems to
be working.

for i=1:1:size(X,2)

for theta=1:1:360

rho = X(i)*cosd(theta) + Y(i)*sind(theta);

if rho <=orig(1)

rho=orig(1)-rho+1;

end

if rho > size(newI,1)

rho=size(newI,1);

end

if (newI(ceil(rho),round(theta))<=maximum)

newI(ceil(rho),round(theta)) = newI(round(rho),round(theta)) - 1;

if newI(ceil(rho),round(theta)) <= 0

newI(ceil(rho),round(theta)) = 0;

end

end

end

end

4.5 Using edge orientation

Here, we need to use another input image providing us with the local edge orientation. This aspect
has already been implemented and studied in project 2. It requires to compute the local gradient
of the image and then we can derive a magnitude map and an edge orientation map. We will use
the images produced during this project as input for our function. This function will associate
this angular value to the computation of Hough transform to reduce it to a small subset of angles
associated to each point. By doing so, we can reduce a lot the clutter of the Hough parametric space
and hope to be able to find local maxima easily. The following code present the new computation of
Hough space based on this angular information and also based on the confidence interval we provide
due to the noisy structure of this image.

for i=1:1:size(I2,1)

for j=1:1:size(I2,2)

if I2(i,j)==255

Y(k)=i;

X(k)=j;

theta_im(k) = I3(i,j)*(360/255);

theta_lower = round(theta_im(k)) - 5;
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if (theta_lower <=0) theta_lower = 1; end

theta_upper = round(theta_im(k)) + 5;

if (theta_upper >360) theta_upper = 360; end

for theta=theta_lower:1:theta_upper

rho = (X(k))*cosd(theta) + (Y(k))*sind(theta);

if rho <=orig(1)

rho=orig(1)-rho+1;

end

if rho > size(newI,1)

rho=size(newI,1);

end

newI(round(rho),round(theta)) = newI(round(rho),round(theta)) + 1;

end

k=k+1;

end

end

end

4.6 Other functions

We used few other functions we implemented in previous projects to study histograms and compute
edges of an image. Sometimes a small external processing was done to enhance the quality of the
input image and obtain a bit more accurate results.
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5 Conclusion

This project allowed us to study again an important feature in image processing which is edge de-
tection. We already studied how to compute them using filtering. In this project we implemented
Hough transform which rely on a dual space called Hough space. This dual space is using accumu-
lation techniques to convert an edge into a set of curves and determine the edge parameters : slope
and y-intercept.

We could see in that project the importance of a pre processing step in order to provide a bet-
ter image to our algorithm. Indeed, an edge detection is performed here and then a thresholding of
the image to only extract features of interest as clear edges. We also saw that the structure of these
edges will influence the Hough space structure and will have significant consequences on multi line
extraction.

I also show in this project that using mathematical functions according to their behaviour was
a good solution to improve and enhance the contrast of the Hough space without having to use
another editing software. This is just a global intensity processing function we studied at the begin-
ning of the semester. Of course using other function is possible and could probably lead to better
results.

As we’ve seen, this edge computation was done using an edge map extracted using the gradient
of the image or other types of filter. Other method exists, one of them rely on mathematical mor-
phology to process images. The goal would be to extract the topological skeleton which is a line
version of a shape which is equidistant to its boundaries.

We will show in the next project that there are other method based on active contours to de-
tect the borders of an object in an image. This method also relies on specific features of the image
as we did in this project. The final goal is always to be able to segment object from an image to
study them and their properties.
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