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1 Introduction

The objective of this second project is to get deeper in the image processing functions. Indeed,
after having work on histograms which is a global processing of the image, we are going to work
on a local processing which is filtering. The purpose of filtering can be multiples, reduce noise on
a image for example or detect some important features of an image such as edges. We will in this
work present different applications of filtering, the results we obtained and the code we implemented.

The implementation is also realized using MATLAB.

Note: Some images were provided for this project, for the MRI image I used, I don’t have any
right on it, it comes from a MRI database. The cameraman image belongs to the MIT, and I have
to mention that the image has a Copyright from the Massachusetts Institute of Technology but
it’s a test image from MATLAB. I made all the other drawing or images so there is no Copyright
infringement in this work.

The pictures are contained in the archive with the report so if you want to see them bigger they are
in the picture directory.

Note: The following MATLAB functions are associated to this work:

• convolution.m : OutputIm = convolution(InputImage, weight, display)

• convol separable.m : OutputIm = convol separable(InputImage, weightx, weighty, display)

• separable gaussian.m : OutputIm = separable gaussian(InputImage, sigma, display)

• Gaussian weights.m : OutputIm = gaussian weigths(n, display)

• edge detection.m : OutputIm = edge detection(InputImage, weightx, weighty, display)

• template matching.m : OutputIm = template matching(InputImage, template, threshold, display)
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2 Theoretical definitions

2.1 Image

A deep presentation of digital image has already been done in the introduction of the previous
project so we will rely on what we have already presented.

We will just remind that a digital image can be considered as a numerical two dimensions array
which is the reason why we can process them in the discrete space.

2.2 Mathematical approach

Filtering is an important step in image processing because it allows to reduce the noise that generally
corrupt a lot of images. But filtering can also be used to perform other operations such as feature
detections to extract the edges of objects in a image or to perform a template matching. These
operations rely on a mathematical operation called convolution.

2.2.1 Convolution

Convolution is a mathematical operations on two functions: f and g to produce a third function
which correspond of the area under the curve of the product of the two function f and g the
continuous definition of convolution is given by:

(f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ) =

∫ +∞

−∞
f(t− τ)g(τ) (1)

Which can of course be converted into a discrete version to be applied to the discrete structure of
an image.

(f ∗ g)[n] =
+∞∑

m=−∞
f [m]g[n−m] =

+∞∑
m=−∞

f [n−m]g[m] (2)

In our case, one of the previous function is going to be the input image array and the other function
is going to be the filter kernel. A normalization step is clearly necessary to keep the intensity
distribution invariant. Indeed, the kernel filter used should not modify the intensity distribution of
the image. The implementation of this operation is presented in the implementation section.

2.2.2 Correlation

The cross-correlation is a measure of similarity of two signals or shapes. It’s definition is really
similar to convolution and is given by;

(f ◦ g)(t) =

∫ +∞

−∞
f∗(τ)g(t+ τ) (3)

Which can of course be converted into a discrete version to be applied to the discrete structure of
an image.

(f ◦ g)[n] =

+∞∑
m=−∞

f∗[m]g[n+m] (4)
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2.2.3 Types of filter

In this project, we are going to work on different types of filters. The filters presented in this part
are called averaging filters or low pass filter.

Averaging Kernel In this project, we are going to work on different types of filters. The first
one is the smoothing kernel filter using a averaging kernel where all the elements have the same
weight. The general definition of a N ×N kernel is :

WN =
1

N2


1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

 (5)

Here are some examples of filter kernels we are going to use :

W3 =
1

9

 1 1 1
1 1 1
1 1 1

 and W5 =
1

25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (6)

An important thing to notice here is that the dimension of the filter has to be odd. Because we
want to modify the central pixel so it has to be surrounded by the same number of pixel which can’t
be achieved with a kernel of even dimension.

Gaussian Kernel As we presented in the previous project, the Gaussian distribution is widely
used to model noise. So it seems pretty straightforward to use this distribution as a template
for smoothing an image. The Gaussian distribution is a really interesting distribution and can be
approximated easily using convolution. Let’s remind the definition of this density.f : R→ R

x→ f(x) = 1
σ
√
2π
e

−1
2

(
(x−µ)
σ

)2 (7)

This definition can be generalized to multiples dimensions with the multivariate Gaussian model:f : Rn → Rn

[X]→ f([X]) = 1

σ2π
N
2
√
|C|
e

−1
2 ((X−µ)TC−1(X−µ)) (8)

With C being the Covariance Matrix defined by:

C =


E{X2

1} E{X1X2} E{X1X3} · · · E{X1Xn}
E{X1X2} E{X2

2} E{X2X3} · · · E{X2Xn}
E{X1X3} E{X2X3} E{X2

3} · · · E{X3Xn}
...

...
...

. . .
...

E{X1Xn} E{X1Xn} E{X1Xn} · · · E{X2
n}

 (9)
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The Gaussian Kernel is composed of weights determined using the previous definition. But there
exist an other way to generate those weights by using convolution. Indeed, if we use the standard
vector [1, 1] and apply the convolution on itself the first time and then on the result we get the
coefficients of Newton’s Binomial Theorem. Which according to the central limit theorem gives a
fair approximation of a Gaussian distribution as the number of iterations increase. The following
picture gives an illustration of it. The code used to generate this result will be presented in the
implementation section. The result has been normalized and we can clearly see the convergence to
a Gaussian distribution even after few iterations.

Figure 1: Convergence of convolution to a Gaussian distribution of iterations 10:10:150

Indeed, the Gaussian kernel is a kind of smoothing filters where the weights are different according
to the position of the pixel in regard to the central pixel. The weights are determined using the
standard deviation of the Gaussian law. Here is an example of a simple Gaussian smoothing kernel.

G3 =
1

16

 1 2 1
2 4 2
1 2 1

 (10)

Figure 2: Summary of the two types of filters: (a) averaging box, (b) Gaussian
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2.3 Filtering

2.3.1 Application of convolution

As presented in the previous part, the convolution is a local operation in which a filtering kernel
is moving on the image to modify a pixel value according to the neighbours intensity. Here is a
graphical explanation of the algorithm.

Figure 3: (a) smoothing kernel, (b) evolution of the kernel on the image, (c) Result of smoothing

2.3.2 Separability

Separability is a mathematical property of multidimensional convolution based on commutativity.
Let’s explain it, with the definition of the bi-dimensional convolution.

h[x, y] = f [x, y] ∗ g[x, y] =

+∞∑
j=−∞

+∞∑
i=−∞

f [i, j]g[x− i, y − j] (11)

Let’s assume that f [x, y] is our kernel and has the separability property:

f [x, y] = f1[x]× f2[y] (12)

If we apply the previous result to the convolution we obtain:

h[x, y] = f [x, y] ∗ g[x, y] =

+∞∑
j=−∞

+∞∑
i=−∞

f1[x]× f2[y]× g[x− i, y − j] (13)

h[x, y] =
+∞∑
j=−∞

f2[y]

[
+∞∑
i=−∞

f1[x]× g[x− i, y − j]

]
(14)

If we plug in the previous equation the definition of the convolution given by:

(f ∗ g)[x] =
+∞∑

m=−∞
f [m]× g[x−m] (15)
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We finally prove that if the kernel is separable, we can perform the convolution in two steps with
the following formula:

h[x, y] = f2[y] ∗ (f1[x] ∗ g[x, y]) (16)

The following picture is showing how we can separate a kernel. (the star here stands for the matrix
multiplication)

Figure 4: Separability of a 2D kernel in two 1D kernels

A good solution to know if a kernel is separable is to study the rank of the matrix. Indeed, if
the rank is equal to one the kernel is separable. To determine that we just need to make sure that
the Singular Value Decomposition of the Kernel only have a unique singular value.

2.3.3 Convolution issue

As you can see on the figure 3 (b), to fit perfectly in the image, the center of the kernel is not on
the first pixel of the image. Indeed, we are always modifying the center pixel of the kernel so what
to do if the kernel is lying in an area outside the image. This something we will have to take in
account when we are going to implement the convolution because several solutions are possible to
get over this issue.

Figure 5: Result of implementation

The first solution to that problem will be to redefined the image, with a bigger size and sur-
rounded by zeros or other constant value. This will allow us to really cover the all image with the
kernel.
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Figure 6: Possible solution with zeros outside the image

A second approach could be to implement a wrapping of the image. That is to say consider that
the image is circular on both directions which gives it a spherical shape. The implication for the
pixel of the kernel is presented on the following figure.

Figure 7: Possible solutions with wrapping according to the position of the kernel

There are probably other solutions, this is just few example to solve this issue. The solution to
use will of course depend of the application and the purpose of the filtering operation.
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2.4 Edge detection

2.4.1 Simple edge detection

The basis of edge detection is relying on the gradient of the image. In a continuous space the
gradient is defined by :

∇(f) = grad(f) =

[
gx
gy

]
=

[
∂f
∂x
∂f
∂y

]
(17)

The gradient of an image has two geometrical properties: its magnitude and its direction given by
the angle between its two components:||∇f || =

√
g2x + g2y

α = arctan
(
gy
gx

) (18)

In a digital image, the gradient is computed on a discrete structure so we need to compute it for
every pixel with the following equations :{

gx = ∂f(x,y)
∂x = f(x+ 1, y)− f(x, y)

gy = ∂f(x,y)
∂y = f(x, y + 1)− f(x, y)

(19)

Which gives us the following discrete kernel to apply in both x and y direction:

Figure 8: edge detection kernel

Let’s also introduce Sobel’s filter for edge detection that we are going to use as a comparison
when we will implement the edge detection.

Sh =

 −1 2 −1
0 0 0
1 2 1

 and Sv =

 −1 0 1
−2 0 2
−1 0 1

 (20)
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3 Filtering

3.1 Image Smoothing

In this part, the objective is to create a smooth effect on an Image. To do so, several methods
exists, and the idea here is to consider a small patch which is going to move on the image and give
to its central pixel the value defined by the pixel contained in it. See the previous section for a more
theoretical definition. Smoothing is a technique used for reducing the noise on an image by blurring
it. It’s removing some small details from the image and could have interesting applications.

3.1.1 Direct smoothing

The direct smoothing is a reference to the processing we use to apply the filter. Indeed, as we ex-
plained in the theoretical part thanks to the mathematical properties of the convolution some filters
can be apply separately. In this part we are going to implement the direct filtering method using
the convolution between a bi-dimensional image and a bi-dimensional kernel. The implementation is
presented in the implementation section. In this part we are going to run the function with different
input images and different kernels to study the differences.

In a first part we are going to focus on a linear filter which is an averaging filter. This is the
most intuitive way to reduce noise by relying on the idea that averaging the pixel values in a special
neighbourhood should reduce the influence of the noise among those pixels.

Here is a first example of a filtering using W3.

Figure 9: Smoothing of an original text image with W3
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Let’s analyse the result. So first thing to say is that we have the 1 pixel black border as we
were expecting due to the offset to prevent from filtering outside of the image. As we can also see,
our implementation seems to be working pretty well because the result appears to be blurry. This
image is good to see it because many characters have sharp edges on the original image and not
that sharp if we zoom on it on the filtered image. This aspect is one of the most important aspect
of applying a uniform weighted kernel.

Figure 10: Influence of smoothing on sharp edges

Indeed, on the previous figure we can clearly see that the 1 pixel edge of the T is now spread
around. The explanation is that as soon as a border of the filter arrived on it, the neighbouring
pixels are going to be affected because of the homogeneous weight of all the pixel in the kernel.

Figure 11: Transformation of edge due to smoothing

We can then take a bigger filter : W5 to see what happen if the kernel gets bigger.
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Figure 12: Smoothing of an original text image with W5

When the kernel is getting bigger the image is getting blurrier and blurrier as we can see because
the separation between letters is not clear any more. Indeed the bigger the kernel is, the bigger the
blur is, because more pixels get into the computation of the value of one. In the case of a 5×5 kernel,
the edge around the picture is composed of two pixels. So in a general n× n kernel, we will have a
dn2 e pixels edge. This first image with text was illustrating how smoothing was affecting sharp and
small structures. We can also apply on it bigger images with bigger objects and structures. Here
are few other examples.

Figure 13: Smoothing of an original capitol image with W3
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Figure 14: Smoothing of an original cameraman image with W3

Figure 15: Smoothing of an original cameraman image with W5

If we analyse the previous results, we can clearly see on the capitol image, that sharp structures
such as the small divisions of the windows are no longer visible because if they are 1 pixel big, they
are averaging with 8 other pixel of background so they disappear little by little according to the
size of the kernel. It also present within the example of the cameraman image where some clear
structures of the camera are now really smooth with W5 for instance.

3.1.2 Separable Filtering

This part is going to rely on the separability property we presented in the theoretical section. The
kernel we are going to apply has to be symmetrical so we can decompose it with the following
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formula:
w[x, y] = w1[x, 1]× w2[1, y] with× being the matrix multiplication (21)

In our case we are going to use again kernels W3 and W5 which are separable because they are
symmetrical. Here is an example of separability for W3, generalisable to any equally weighted
squared kernels.

W3 =
1

9

 1 1 1
1 1 1
1 1 1

 =
1

3

 1
1
1

 ∗ 1

3

[
1 1 1

]
(22)

The implementation of that part is shown in the implementation part let’s show and discuss some
results.

Figure 16: Smoothing of an original cameraman image with separable W5

Comparing two images, like this one and the one shown in the previous section without having
them side by side is not easy. So a good solution to know how different are two images is to subtract
one from the other and display the resulting image. If it’s black it means that the difference is equal
to zero and that images are the same.
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Figure 17: Difference between the two convolutions pipeline for smoothing with W5

As we can see here, the two images looks exactly the same except on two pixel rows at the top
and the bottom of the image. The explanation of this phenomenon is due to computation of the
separable convolution is given in the implementation part.

3.1.3 Comparison between direct and separable filtering

In this section we are also going to apply the W3 and W5 kernel, so we should get the same resulting
image. But the question here is more about computing performance. To quantify the difference
between the two methods we are going to analyse the computation time difference between the two
previous methods.
To do so, we use an embedded function of MATLAB called tic-toc which returns the duration to
compute a block of instruction. Here, the studied bloc of instruction is relative to the computation
of the two convolutions, we did not take in account the image input/output reading, displaying
operations. We ran the comparison over several images using W5, here are the results :

Image Size Direct Convolution Separable Convolution

Cameraman 256× 256 2.9 s 0.74 s

Capitol 470× 370 7.6 s 1.82 s

Hand-hw 300× 400 5.4 s 1.27 s

text 163× 266 1.91 s 0.47 s

The duration are the mean duration over 5 executions of the code. Of course to be consistent we
should do an average of more results and also use a local version of MATLAB. In this case, we
used a network version so the calculation may be influenced by available bandwidth at the time of
experiment. But this gives a pretty good illustration of the computation time difference. Indeed,
computation time is dependent of Image size, the bigger the image, the longer the computation.
The difference ratio between direct and separable convolution is around 4.

16



Which is a non negligible difference and comes from the fact that in direct convolution complexity is
defined as O(width× height×n2), were n is the dimension of a square kernel and width and height
are the dimensions of the image. Indeed, if we look at the convolution implementation, we see that
there are 4 nested for loops. While on the other hand, if we look at the separable convolution, each
one of them has a O(width×height×n) so the total complexity is in O(width×height×n) which
is better than O(width× height× n2).

3.1.4 Separable Gaussian Filter

The Gaussian Filter is a really interesting filter because weights are not homogeneous and gives
more influence to the closer pixels and less the others. We are going to implement the general
formula given in the theoretical section, to create 1D Gaussian filter. We can also get some 2D
kernels thanks to convolution because the Gaussian kernel is separable. In this part, the size of
the kernel is going to be constrained by the choice of the standard deviation of the Gaussian filter.
Indeed, we chose to use the standard ±3σ as a reference so if σ equals one, the filter is going to have
a 2×3×σ+1 width and is going to be centred on d3×σ+1e. The brace are used to represent the ceil-
ing function. Indeed, to have a 5×5 kernel, you need to have σ = 1

2 which is going to be centred on 3.

The implementation of this function is presented in the implementation section. Let’s analyse
some results.

Figure 18: Smoothing of an original cameraman image with separable G5
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Figure 19: Smoothing of an original cameraman image with separable G7

The first thing to notice here is that according to the formula we implemented, we have to have
big enough kernels to see a significant result. Indeed, if we look at the first two kernels we can
see that they are not influencing a lot the image. Because their respective sigma is 0.25 and 0.5.
And this filters with very small sigma are not smoothing the image because the weights for the
neighbours pixels are really small. On the other hand, if sigma gets bigger, so does the kernel, the
smoothing effect is more visible and important. So, if we apply the kernel described in the project
with σ = 2 we obtain:

Figure 20: Smoothing of an original cameraman image with separable G13

So let’s do a quick comparison with some results we got before for the same image. Here again
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I’ll use the difference between image to illustrate. If we compare the two filtering on the cameraman
image with respectively W5 and G5 we can see that the image filtered with the Gaussian kernel
appears to be less smooth. The reason is that the Gaussian weights distribution is not giving a
weight as big as the one given by the averaging kernel to the far neighbours.

Figure 21: Smoothing of an original cameraman image with separable G13

Indeed, if we look at the previous figure, the difference between the two images shows clearly
that these differences are located on the edges of the objects. The grey is the showing pixel were
the difference is close to zero. And that actually makes sense, because in a background environment
differences are not going to be as huge as on a object because the result of convolution affect pixels
the same way because intensity are close. While on the other hand, when you are on an edge, the
Gaussian kernel will give more weight to the central pixel compared to the neighbours which will
create the difference. To illustrate this point the idea is to go on the head of the cameraman to look
at the difference.
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Figure 22: Comparison between homogeneous and Gaussian filtering on the head

On the previous figure, we can clearly see that the edge of the head is more clearly defined on
the Gaussian smoothing than on the equal weight smoothing because of the influence of weights.

3.2 Noise Filtering

The idea of this section is to apply the two smoothing techniques we presented before to a noisy
image to see what happens. To do so we are going to use the checker board image used in the previous
project. The idea here is to provide an application of those techniques and also to illustrate some
points presented before. Here are two example of the equal weight filtering applied to the checker
board.

Figure 23: Checker board filtered with W3
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Figure 24: Checker board filtered with W5

Here, we can clearly see that even with a small kernel like W3 the noise is reduced and it gets
better with W5. So now, let’s compare with the Gaussian kernel.

Figure 25: Checker board filtered with G5

So, if we compare W5 and G5 we can see, that the blurring effect is much more effective with
the equal weights than with the Gaussian filter, but the first one is blurring edges too while the
Gaussian filter seems to keep them less blurry. An other interesting property we can see here if we
use the functions we implemented in the previous project is that smoothing does not change the
overall shape of distribution of intensities of the image. We generated the associated histogram for
the previous images and the distribution stays Gaussian, but is slightly stretched and translated to
brighter values.
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Figure 26: Histogram of Checker board filtered with Gaussian filter

So it seems that the choice of the filter really depends on the application, and if keeping a clearer
edge is important or not. The best illustration possible would be using the text image where the
difference is striking, if we use a 7× 7 kernel.

Figure 27: Comparison between W7 and G7

Here, we can see that with W7 we are not able to read the next while we still can with G7.
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4 Edge detection

The objective of this part is to be able to extract some important features from an image such as
edges.

4.1 Local edge filtering

In this part, we are using the kernel we introduced in the theoretical section and we are going to apply
it on the image to see what can obtain. The implementation is presented in the implementation
section. Firstly let’s try with the horizontal vector [−1, 0, 1]:

Figure 28: Detection of vertical edges

As we can see we obtain an edge map composed mostly with the vertical edges, even if some
diagonal and some horizontal are here. This is because when we apply the kernel, we compare two
pixel in the horizontal direction so we find the places where vertical changes occur. This is mostly
visible on the background of the image where we get the vertical structures of the buildings and
also on the shoulder of the cameraman which is really horizontal and does not appear. The same
reasoning can be inverted while we use the transposed vector so we expect to have the horizontal
structure highlighted.
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Figure 29: Detection of horizontal edges

Indeed, the previous statement is verified and we can clearly see it, specially on the head of
the character, the camera or the building structure at the end. This was also a good way to prove
that our implementation of convolution is working because we obtain the expected results. We can
compare the two previous results with the use of the full 3× 3 filters given in the book.

Figure 30: Detection of horizontal edges using Sobel filter Sh

The difference with the previous line filter is barely visible on this image, we have to zoom in to
really see that this image is smoothed due to the weights used while the other one is not. Then we
are going to generate the norm of the gradient and the angle associated. The edge map is presenting
all the edges of the image because it’s computed from both of the previous images. Here are some
results that we are going to analyse.
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Figure 31: Cameraman edge analysis with dx, dy, gradient norm and angle

Figure 32: Hand edge analysis with dx, dy, gradient norm and angle

The edge map is pretty easy to analyse and understand in both cases because it represents the
norm of the gradient so it’s a combination of horizontal and vertical edges. While the angle map
is harder to understand. It’s in degrees in the range [−180, 180]. But if we look at it we can see
that firstly there is a lot of noise and then that there is also areas where the color is the same. So
it means that in these areas the gradient is the same. So the angle map gives us the area where the
gradient vector has the same orientation, and on the previous image it fits pretty well the shape of
the hand.
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4.2 Edge filtering at specific scales

In this section we are going to use a slightly different pipeline to process an image to get edges.
Indeed, we are firstly going to apply a Gaussian Filtering and then an Edge detection. Here are two
examples with two different standard deviation of the Gaussian kernel we apply:

Figure 33: Cameraman edge analysis with dx, dy, gradient norm and angle previously filtered with
G7

Figure 34: Cameraman edge analysis with dx, dy, gradient norm and angle previously filtered with
G13
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If we compare the two previous results with the results obtained without smoothing, there is a
lot to see and here the angle map is helpful to analyse. Indeed, applying a Gaussian smoothing with
a large standard deviation is making the edges really blurry, so the edge detection is going to detect
easily the biggest structures. In fact, we can see on the vertical and horizontal edge maps, that the
buildings in the background are not as well defined as without filtering. And indeed, if the kernel
gets bigger they become barely visible. But, on the other hand on the previous results, the edges on
the main objects (cameraman, camera) are bigger so the gradient on them looks more homogeneous
according to the angle map where the angle on them seems to be constant which was not obvious
without smoothing. And they are also more visible because the noise in the background is more
homogeneous due to smoothing.

5 Template matching

In this section, we are going to use the ideas and techniques presented before to perform a template
matching. In this section, we are going to use the correlation between the image and the mask we
are going to apply. First thing to do is to select an image and find a template. Many combination
are possible we are going to present few of them. We are in a first time going to work with the
shapes image. Let’s in a first time consider that we want to locate the circles. The first solution
would be to set as kernel mask the exact circle, which is going to be a huge mask. Or we can try
to approximate it with a big enough square. This is what we are going to do in a first time and we
will discuss it and then improve it. So here is our image and the resulting correlation with a 45× 45
homogeneous kernel and the associated correlation image.

Figure 35: (a) Original shapes image (b)Correlation with W45

Then to have a better view of the matching, let’s invert the previous correlation image to have
in white the places with maximum correlation.

27



Figure 36: Inverted Correlation Image

As we can see on the previous image, there seems to be 2 spots where the correlation is big and
maybe other few areas. The to big white areas are indeed the circles, but let’s be sure of it by firstly
looking at the height surface associated to this image.

Figure 37: Correlation height map

Or we can secondly consider the threshold version of our correlation map.
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Figure 38: Binary correlation map

And indeed as we were expecting, the two spots we located before are the maxima of the
correlation. So even with an approximation of our circle it’s working pretty well. But there are few
things to discuss here. Firstly if the approximation we took was bigger, i.e with a smaller square
that would fit in more shapes than only the circles, our analysis would be wrong. Here is another
inverted correlation map that shows the result with a 25 × 25 square. And as we can see there a
more areas where the square fits so the correlation is high there.

Figure 39: Inverted Correlation Image with W25
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Figure 40: Correlation height map

Figure 41: Binary correlation map

Another thing which is really important here is our method to deal with borders. Indeed, the
bigger the kernel, the smaller the image. And in this precise case, we are looking for big structures,
that we cannot always approximate so a convenient solution in this image would be to add a border
around with half size of the kernel and with the background value. In this case, where our pattern
as a really specific gray value it’s not going to interfere or modify the image.
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The image of the shape patterns is from far the easiest to analyse and to work with because shapes
are big and the patterns are pretty easy to get and well separated from each other, but the only
inconvenient is that their big size is going to require a longer computation time. So let’s try with
the text image and with the letter ”a”.

Figure 42: Text image and correlation map

Figure 43: Text correlation map
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Figure 44: Text correlation height map

So as we can see on the previous results, here is harder to get exactly the position of ”a” in the
text image, because objects are smaller, closer to each other and not separable easily. An interesting
way to see thresholding in this situation would consist in taking a virtual plan that the move up
long the z axis of the surface. So the goal here is to find a good enough threshold that will give us
the location we are looking for. Once we found a quite good threshold we can look at the location
found and see if they match with what we are looking for. Here is the binary image resulting from
a limit thresholding and the associate height map:

Figure 45: Text correlation map after threshold
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Figure 46: Text correlation height map after thresholding

The previous height map is like a ”Dirac forest” where all the Dirac are representing a pixel
where correlation with our template is high. If we analyse it we have 35 peaks while in reality we
have 15 a in the image. So let see which of the peaks are actually representing a real a and what to
the other represent.

Figure 47: Highlight of pattern in text correlation map after threshold

So according to the previous result, we can see that all our a′s are detected, but also other
letters. This is where it gets tricky because the threshold has to be high enough to remove as many
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other letters as possible, but not too high to keep the a′s. In the previous figure, if we increment
the threshold value of a single unit, we lose several a′s which is not what we want, because their
correlation value is lower than the correlation with other letters which could seem wrong but which
actually does make sense if we consider that letters a really close and that all a′s of this image
could be slightly different from each other. Indeed, it seems that the characters in the text are not
homogeneous so all a′s could possibly be different. So the solution could be to threshold the image
before. So we tried that aspect and we found out that it was not more effective. Here is the result:

Figure 48: Binary text correlation map

So in this case, it seems pretty hard to have what we want, so based on the result with just few
dots we can find the location of our a′s but also some other letters. Once we have that we could
store the location of the remaining dots into a vector and try to compute the correlation only for
those exact locations. We implemented this and we found out that the correlation of all these points
was really close and we did not find a way to separate the a′s from the other letters.
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6 Implementation

6.1 Convolution

Convolution is the most important function to implement in this project because it’s the basis of all
the filtering operations we need to perform. To implement the discrete convolution with MATLAB,
we used the equation defined in the theoretical section:

h[x, y] = f [x, y] ∗ g[x, y] =
+∞∑
j=−∞

+∞∑
i=−∞

f [i, j]g[x− i, y − j] (23)

Here is the core implementation of the convolution:

%walk through the image without the parts where the filter is not included

%completely in the image

for i = ceil(size(weight,1)/2):1:size(I,1)-size(-size(weight,1)+ceil(size(weight,1)/2))

for j = ceil(size(weight,2)/2):1:size(I,2)-size(size(weight,2)+ceil(size(weight,2)/2)

convol=0;

%compute convolution for the neighbourhood associated to the kernel

for a = 1:size(weight,1)

for b=1:size(weight,2)

convol = convol +

(weight(a,b)*I(i-a+ceil(size(weight,1)/2),j-b+ceil(size(weight,2)/2)))/(255);

end

end

new_im(i,j)=convol;

end

end

Let’s explain a tricky thing in this implementation: the definition of the correct boundaries of the
loops.
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Figure 49: Explanation of the boundaries of the convolution

As we can see on the previous figure the starting point of the convolution is defined by the center
point of the kernel. So we have to start computing the convolution from this point, because if not,
we will face a situation where we need to read in undefined pixel (out of the array). So this is why
the loops on the image respectively starts at the pixel corresponding to half the x dimension and y
dimension of the kernel. Then the same idea applies for the last iteration which has to be located
on the last pixel of the image.

Another aspect we have to take in account for the computation of the convolution is to flip the
second signal and be sure that the right pixel are assigned for the multiplication. So we need to
check if the multiplication is correct so let’s consider a 3x3 kernel with starting position (2,2).

a
b 1 2 3

1 w(1,1)*I(3,3) w(2,1)*I(2,3) w(1,3)*I(1,3)

2 w(1,2)*I(3,2) w(2,2)*I(2,2) w(3,2)*I(1,2)

3 w(1,3)*I(3,1) w(2,3)*I(2,1) w(3,3)*I(1,1)

Which seems to be right because if we flip a 2 dimension matrix according to both axis here is
what happen:

A B C

D E F

G H I

I H G

F E D

C B A

So it seems that the implementation seems correct.

OutputIm = convolution(InputImage, weight, display)
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6.2 Separable Convolution

Due to the separability property of some kernel filters, we also implemented the separable convo-
lution. The algorithm to do that is based on the following formula, which has been presented and
explained in the theoretical section.

h[x, y] = f2[y] ∗ (f1[x] ∗ g[x, y]) (24)

Indeed, as we can see on the previous equation, we cascade two convolutions. If we explained this
aspect a bit more, we have a first convolution with the X component of the kernel which is going to
create a first intermediary image (discussed in other sections) and then we have a second convolution
with the Y component of the kernel which gives the result image. We will explain, and discuss those
aspects later. Firstly let’s present the implementation.

Here, the idea is to perform two convolutions between a vector and an image. So we implemented
convolution between an image and a vector based on the previous code and run it twice.

for i = ceil(size(weight1,1)/2) :1: size(I,1)-size(weight1,1)+ceil(size(weight1,1)/2)

for j = ceil(size(weight2,2)/2) :1: size(I,2)-size(weight2,2)+ceil(size(weight2,2)/2)

convol=0;

%compute convolution for the neighbourhood associated to the vector

for b = 1:size(weight1,1)

convol = convol + (weight1(b)*I2(i-b+ceil(size(weight2,2)/2),j));

end

new_convol(i,j)=convol;

end

end

for i = ceil(size(weight1,1)/2) :1: size(I,1)-size(weight1,1)+ceil(size(weight1,1)/2)

for j = ceil(size(weight2,2)/2) :1: size(I,2)-size(weight2,2)+ceil(size(weight2,2)/2)

convol2=0;

%convolution with vector on the image generated before

for a = 1:size(weight2,2)

convol2 = convol2 + weight2(a)*new_convol(i,j-a+ceil(size(weight2,2)/2));

end

OutputIm(i,j)=convol2;

end

end
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The call for this function is :

OutputIm = convol separable(InputImage, weightx, weighty, display)

So we get here a close result from the previous one obtained with the direct convolution between the
bi dimensional kernel and the image. But we needed to be sure that they were the same so we could
use one or the other with no risks. To do so, we performed a very simple operation: the difference
between the result of the direct convolution and the result from the separable convolution. Here is
what we got:

Figure 50: Difference image between the results of the two convolutions

So, according to what we have on that image, the result seems pretty good except on the top
and bottom borders of the image. Indeed, we have here the result of the smoothing on the original
image with the first kernel and then in the cascade we smooth the image where the border is defined
with a zero. We can clearly see that the second convolution is done on the y axis because it affects
rows. (Analogy with edge detection where a vertical filter shows horizontal edges).
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6.3 Gaussian weights

6.3.1 Using formula

To implement our Gaussian filter we use the following formula and few tricks to make it work in
MATLAB. f : R→ R

x→ f(x) = 1
σ
√
2π
e

−1
2

(
(x−µ)
σ

)2 (25)

In out program, the input parameter is the standard deviation σ that is conditioning all the kernel
distribution. Indeed, by specifying a value of sigma and knowing that we want to be in the range
±3σ it’s then easy to derive the mean and the size of the vector. The mean is going to be 0 and
according to the example, a σ of 2 should give a kernel of dimension 13.

for l=-(ceil(3*sigma)):1:ceil(3*sigma)

g(l+(ceil(3*sigma))+1)=(1/(sqrt(2*pi)*sigma))*(exp(-0.5*((l-0)/sigma)^2));

end

We can of course check few things in this implementation, the first thing being the size of the filter if
σ = 2. In this case we have a 13 elements signal. Then we can check the sum which is indeed equal
to one, due to the use of the pdf’s definition. The interesting thing to notice in this implementation
is that σ is the only parameter conditioning the filter. For instance if we consider the G3 filter we
defined in the theoretical part we are not going to have it here. Indeed, we need to set a value of
0.25 to have a 3× 3 kernel. And we have :

0.00000011238 0.00033501293 0.00000011238
0.00033501293 0.99865949870 0.00033501293
0.00000011238 0.00033501293 0.00000011238

6=
0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625

(26)

The difference is that in the second case, it’s a 3 × 3 kernel which approximate a real Gaussian
distribution, while in our case it’s the real Gaussian kernel for the given standard deviation.

The call for this function is :

OutputIm = separable gaussian(InputImage, sigma, display)

This function is implemented based on the separable convolution presented before.

6.3.2 Using convolution

As presented in the theoretical section, there is an easy mathematical way to approximate the Gaus-
sian distribution. This distribution relies on the convolution of the standard vector [1, 1] to generate
Newton’s Binomial coefficients. The implementation just consists in a loop of convolution. And
then based on separability properties of such a kernel, we can compute multidimensional Gaussian
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kernels using matrix product.

The call for this function is :

OutputIm = gaussian weigths(n, display)

Here is the implementation to get the Gaussian normalized coefficients:

init = [1,1];

gauss = [1,1];

for i=1:100

gauss = conv(gauss,init)/sum(2*gauss);

end

The results we get after few iterations of the previous code gives:

0.2500 0.5000 0.2500

0.1250 0.3750 0.3750 0.1250

0.0625 0.2500 0.3750 0.2500 0.0625

0.0312 0.1562 0.3125 0.3125 0.1562 0.0312

0.0156 0.0938 0.2344 0.3125 0.2344 0.0938 0.0156

Which is the pdf normalized version of :

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Also well known as : (
n

k

)
= Ckn =

n!

k!(n− k)!
. (27)

And it also proves the fact that convolving box function will provide a Gaussian because [1,1] is the
simple definition of a box function.
Then, to have a 2D kernel, we just need to use separability property associated with a Gaussian
kernel :
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gaussian2d = gauss’*gauss; % vector multiplication V^T * V = Matrix

Here are some results:

Figure 51: Generated Gaussian distribution with convolution

Figure 52: Multiplication of the previous 1D Gaussian to get a 2D Gaussian Distribution

The 3D view of the previous kernel.
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Figure 53: 3D view of the Gaussian kernel

Then to apply it on the image, we just need to use the resulting matrix gaussian2d, but the
previous kernel is really big so we will use smaller ones and we will need to use the standard deviation
as a parameter of the kernel.
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6.4 Edge Detection

The edge detection algorithm is based on the previous separable convolution function and on the
kernel we presented in the theoretical part. Here is the algorithm:

read image

convolution with horizontal part of the kernel

convolution with vertical part of the kernel

compute edge map and angle map

display results

Here is how we computed the edge and angle maps:

% compute edge map and angle map

for i = ceil(size(weighty,1)/2) :1: size(I,1)-size(weighty,1)+ceil(size(weighty,1)/2)

for j = ceil(size(weightx,2)/2) :1: size(I,2)-size(weightx,2)+ceil(size(weightx,2)/2)

norm_grad(i,j)=sqrt(new_im_separable2(i,j)^2+OutputIm(i,j)^2);

angle(i,j)=atan(OutputIm(i,j)/new_im_separable2(i,j))*(360/pi);

end

end

The call for this function is :

OutputIm = edge detection(InputImage, weightx, weighty, display)

Regarding the edge filtering at specific scale you need to compute first the Gaussian smoothing
using the function presented before and then run this function.

6.5 Correlation

To be able to to perform template matching we rely on the computation of the correlation image.
The following formula we implemented is:

(f ◦ g)[n] =
+∞∑

m=−∞
f∗[m]g[n+m] (28)

for i = ceil(size(weight,1)/2) :1: size(I,1)-size(weight,1)+ceil(size(weight,1)/2)

for j = ceil(size(weight,2)/2) :1: size(I,2)-size(weight,2)+ceil(size(weight,2)/2)

correl=0;

%compute correlation for the neighbourhood associated to the kernel

for a = 1:size(weight,1)

for b=1:size(weight,2)

correl = correl +

(weight(a,b)*I2(i+a-ceil(size(weight,1)/2),j+b-ceil(size(weight,2)/2)));
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end

end

new_im(i,j)=correl;

end

end

This part is not implemented as a function it’s just a part of the template matching section.

6.6 Template Matching

In this section, the implementation relies on the correlation function presented before to compute
the correlation map. Then we do a simple thresholding of the image on the inverted correlation
image.

read image and template

compute correlation image

invert correlation image

threshold image

display results

Here is the implementation of the inversion and threshold steps:

%inverted correlation image

for i=1:size( new_im,1)

for j=1:size( new_im,2)

value= new_im(i,j);

OutputIm(i,j)=255-value;

end

end

% threshold image

for i=1:size( OutputIm,1)

for j=1:size( OutputIm,2)

value= OutputIm(i,j);

if value <= threshold

OutputIm2(i,j)=0;

else

OutputIm2(i,j)=255;

end

end

end
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7 Conclusion

In this project we implemented the convolution which is a really important operation to perform
smoothing and filtering. But we also saw that there is some issue regarding the way to implement
this operation regarding the size of the image and the way how the kernel is going to interact with
the image. Indeed, on the borders of the image, a part of the kernel lays on areas of the image that
don’t exists physically. So we have to come up with solutions to deal with this issue. The easiest
one is not to consider a border in the image where the image is not completely defined. This is
working well but reducing significantly the size of the image if the kernel gets bigger. So there is a
trade off between the size of the kernel and its influence on the resulting size of the image. Another
interesting solution would be to fill a border around the image with the background of the image so
it does not interfere to much with the image and will not imply to reduce the size of the image.

We also had the opportunity to see that the mathematical property of separability could have
a significant influence in computation. This is an important aspect that we have to take in account
if the image and the kernel are big because the computation of convolution is time consuming so
reducing it is always interesting. But this method is only available for separable kernel so this is the
limitation.

We applied the blurring properties of smoothing to noisy images to see their influence. So we
saw that smoothing noise makes it less important and does not change the initial distribution. The
smoothing application is dependent of the application because average smoothing has a stronger
effect on edges than the Gaussian.

The edge filter we implemented is quite good but could maybe be enhanced by using the Canny
filter discussed in class. The fact of smoothing images before applying edge detection is making
edges bigger so easier to detect for our simple edge detection filter.

The template matching application was really interesting because it has a lot of practical appli-
cations in the industrial world. Numerous industries are doing quality controls through image
processing where they need to locate their object and then realize some measurements on it. So this
is where pattern matching becomes powerful because it allows to find easily an object. Indeed, as we
have seen through the text example if we are looking for an object that look like a lot to surrounding
different objects it gets harder and detection has to be used in addition with other processing to
clearly identify the desired object.

This project was a good illustration of the filtering techniques and processing that we can make in
the Spatial domain of an image. This could be used as an interesting source to compare with the
processing and filtering realized in the Frequency domain with Fourier analysis.
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