
eclipse Technology eXchange Preliminary Version

OverView: A Framework for Generic Online
Visualization of Distributed Systems

Travis Desell Harihar Narasimha Iyer Carlos Varela

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180, USA
http://www.cs.rpi.edu/wwc/

Abe Stephens

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112, USA

Abstract

Visualizing, testing and debugging distributed systems is a challenging task that is
not well addressed by conventional software tools. OverView, an event-based Eclipse
plug-in that provides runtime visualization of systems running on distributed Java
virtual machines is presented. In the same way that the coding and debugging tools
in Eclipse make writing software more accessible by visually representing both a
program’s static components: packages, classes, and interfaces, as well as a pro-
gram’s dynamic components: objects, threads, and invocation stacks; OverView
intends to make distributed systems more accessible to programmers by creating an
analogous visual workspace with appropriate abstractions for distributed compo-
nent naming, state, location, remote communication, and migration. Overview is a
generic visualization framework that uses an Entity Specification Language (ESL)
to enable developers to map high-level concurrency and distribution abstractions
into lower-level Java threads, network connections and objects.

Key words: distributed systems, online visualization, dynamic
program reconfiguration

1 Introduction

Many distributed systems are designed using abstractions that create a uni-
fied view of the individual components independently of their locations in the
system. This unified view is especially useful for transparency when mobility
is considered and system components may be reconfigured during a program’s

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Desell, Iyer, Stephens and Varela

Model Entity Container Communication Mobility

Event Event

Actors Actor Theater Message Passing Actor Migration

Mobile Process Ambient Ambient Process-Driven

Ambients Input/Output Migration

Petri Nets Token Place n/a Transition Firing

RMI/CORBA Object JVM Method n/a

Invocation

J2EE JavaBean Container HTTP Request n/a

Table 1
Sample event types for distributed programming models.

life span. Conventional profiling and debugging tools for Java environments,
including those distributed with the Eclipse development platform, restrict a
developer to examine one virtual machine at a time. To examine an entire
distributed program with these tools a developer must use multiple debugger
instances, individually attaching each to a single virtual machine. This divi-
sion makes the global state of the system difficult to intuitively understand
and complicates testing because the unified view provided by the developer’s
original design is either obscured or not present.

Several problems arise when attempting to visualize the state of a dis-
tributed system designed with high-level abstractions such as actors [1], pro-
cesses [17,8], or mobile ambients [3]; since most tools lack first class support
for these abstractions. Some sample abstractions are shown in Table 1. For
instance, conventional profilers provide numerical summaries of dynamic in-
formation such as the length of time spent executing a method or information
at the level of objects and classes. In order to analyze the system at the
higher level, developers must determine which lower level objects at run-time
represent their higher-level abstractions. This process is time consuming, and
partially decreases the utility of using the higher-level abstraction; especially
for visualization.

Most debugging and visualization systems instrument the code to be vi-
sualized, resulting in large decreases in program execution performance. This
also leads to less accurate visualizations since often the errors and race-conditions
that developers are trying to debug will not occur when the system is running
at a slower speed. Compounding this performance hit over a large scale sys-
tem, which may require synchronization between the visualization and visual-
ized JVMs, can seriously reduce the viability of large-scale online distributed
system visualization tool. Nonetheless, many distributed systems are long-
lived and therefore require online visualization tools.

Our approach is to develop a language for describing a unified view of a

2

Desell, Iyer, Stephens and Varela

Distributed

Visualization Program Offline Online High Level

Tool Execution Visualization Visualization Abstractions

Cels N Y N Y

DejaVu Y Y N N

Jinsight N Y N N

Jive N N Y N

Hy+ Y Y N N

OverView Y Y Y Y

Table 2
Different types of program visualization.

distributed system’s abstractions. Developers will be able to retain and utilize
their high level abstractions when visualizing a distributed system for testing,
debugging and optimization purposes. By having a mapping from high level
abstractions to low level Java code, a visualization need not be limited to any
particular abstraction paradigm. Furthermore, this mapping also enables the
instrumentation of code to be targeted to events which are truly significant at
the higher-levels of abstraction. This selective instrumentation helps to make
less intrusive visualization tools, improving scalability.

In dynamically reconfigurable distributed systems, some components may
be created, destroyed, or migrated to different locations due to manual com-
mands by programmers and users, or autonomously by middleware layers for
purposes such as load-balancing or tolerance to failures in the underlying net-
work topology. Components also may communicate with each other, and the
extent and destination of communication is valuable information to distributed
systems developers. Providing an informative visualization of the location and
behaviors of components in a distributed system can lead to more robust and
higher performance systems.

Eclipse is an open source integrated development environment (IDE) that
has an extensible architecture. The IDE can be extended by providing modules
called plug-ins, which provide the developer with a specific tool. Plug-ins are
coded in Java and integrate well into the Eclipse Platform. OverView is an
Eclipse plug-in that provides dynamically reconfigurable distributed systems
programmers and users with a tool to view the global state of the system at
any point in time. It supports both online dynamic visualization as well as an
offline approach where the events in the distributed system can be recorded
and replayed at a future time.

3

Desell, Iyer, Stephens and Varela

2 Related Work

Considerable work has been done in the field of visualization and analysis of
the execution of Java programs (for a survey see, e.g. [9]). Jinsight [12] does
visualization of trace information produced by a special instrumented version
of the Java Virtual Machine. Similarly, the system developed by Walker et
al. [16] uses program event traces to visualize program execution patterns and
event-based object relationships like method invocations viewed within cels.
These systems support only an offline mode where the trace of the program
execution gets visualized. Also they are not specifically designed for visualizing
a distributed system.

Jive [10] does on-line visualization of Java programs. It is a software vi-
sualization framework for dynamic analysis of program data. Jive supports
only non-distributed systems. Snodgrass presents a method targeted towards
distributed debugging and monitoring in which a programmer uses relational
algebraic queries to track run-time dynamics [13].

DejaVu is a Deterministic Java Replay Utility that supports understanding
and debugging multi-threaded [2] and distributed [6] Java applications through
deterministic replay of non-deterministic execution. DejaVu does not support
dynamic visualization but rather a replay of the execution of the different
VMs. Programs are instrumented so that critical scheduling checkpoints can
be profiled and re-traced in subsequent analyses. The Hy+ system proposed
in [4] helps to understand and debug a distributed program by replaying traces
recorded at runtime.

Most of the visualizations mentioned above show fine-grained execution in-
formation about individual classes and objects. They lack a mapping from the
low-level objects to high-level abstractions. Sefika et al [11] allow the devel-
oper to utilize coarse-grained system information to produce visualizations.
In their technique, a developer may introduce abstractions into the system
instrumentation process. The abstractions can then be used as a basis for
several visualizations, with different granularities modeling different aspects
of the architecture being visualized. Walker et al [16] describe a system which
does visualization in terms of a high-level view of the system selected by the
user. It permits lightweight changes to the abstraction used for condensing
the dynamic information. Queries of dynamic program information were used
by Lencevicius [7] to debug online programs, by giving instant error alerts
by continuously checking inter-object relationships during the program’s run-
time.

Our work is unique in that it supports both an online and offline visualiza-
tion of a distributed system. It also allows an easy mapping of the high-level
abstractions through a specification language. Table 2 compares some of the
different systems discussed above.

4

Desell, Iyer, Stephens and Varela

Fig. 1. OverView’s Architecture

3 Visualization Architecture

A distributed systems visualization must be efficient and non-intrusive. Many
race conditions will not appear when the speed of a program is decreased. We
developed the Overview Plug-in Architecture, shown in Figure 1, a model
for distributed systems visualization. This architecture attempts to achieve
minimal intrusion through OverView’s entity specification language (ESL).
The ESL provides a simple language to map from high-level abstractions to
low-level Java code. The ESL is described in depth in section 4. The entity
specifications of a distributed system are used by the OverView plug-in to
instrument the system’s byte-code, inserting profiling statements only when
needed and avoiding the large amounts of overhead incurred by other methods
(such as the Java Platform Debugging Architecture).

The byte-code instrumentor creates a single instrumented profiling agent
(IPA) for every JVM in the distributed program. The OverView plug-in will
register it’s data collector, the component which receives events and forwards
them to the plug-in’s visualization components, with all the IPAs at JVMs it
wishes to visualize. Additionally the plug-in will register some IPAs with other
IPAs, instead of with its data collector. These IPAs will act in a hierarchy to
condense the information sent to the data collector, reducing the overall load.
The IPAs collect profiling information and send this to every registered data
collector or IPA. IPAs may also register to other IPAs, creating a hierarchy for
condensing the amount of information eventually sent to the data collectors.
This approach provides scalability, and allows for multiple OverView plug-ins
to visualize a distributed system simultaneously.

5

Desell, Iyer, Stephens and Varela

Entity ::= entity IDENTIFIER is Name EntityBody

EntityBody ::= { UniqueByDeclaration (WatchDeclaration | WhenDeclaration)* }

UniqueByDeclaration ::= unique by Value ;

WatchDeclaration ::= watch IDENTIFIER is Value ;

WhenDeclaration ::= when (start | finish) MethodSpecification send EventDeclaration

[ExceptionSpecification , ExceptionSpecification] ;

MethodSpecification ::= IDENTIFIER ([Parameter (, Parameter)*])

ExceptionSpecification ::= on exception IDENTIFIER send EventDeclaration

Parameter ::= Name IDENTIFIER

Name ::= IDENTIFIER (. IDENTIFIER)*

EventDeclaration ::= EventType (([Value (, Value)*])

EventType ::= Creation | Deletion | Migration | Update | Communication | Error

Value ::= LITERAL

|exception

| (this | IDENTIFIER) (. ValuePart)+

ValuePart ::= IDENTIFIER [([Value (, Value)*])]

Fig. 2. Entity Specification Language Grammar

The data collector receives the events and sends them to the event mapper,
which periodically updates the world view and stores events to the historic
data. The historic data can be saved to disk and used to replay the events in
offline. The IPA, event mapper, historic data and world view are described in
greater detail in section 5.

4 Entity Specification Language

OverView’s Entity Specification Language (ESL) allows a developer to de-
fines entities and events based on actions made by those entities. These
entities are based on the concepts of distributed computing models; entity
creation/deletion, containment, migration, state change, communication and
errors. By mapping these concepts to low level Java code, the ESL provides a
universal way to translate high level abstractions to low level Java code. This
provides a homogeneous model for visualization. The simplicity of the ESL
model is reflected in the language, as shown in Figures 2 and 3.

The ESL provides five types of declarations for an entity:

• unique by provides the ability to declare multiple objects as a single iden-
tity, as an object in a distributed system may be represented by multiple
objects across various JVMs during its life span. This declaration specifies
a unique string identifier to describe the entity.

• contained by provides support in the visualization for one entity to be
contained within another.

• watch specifies that a specific attribute at the visualization level should
reflect all changes to a member of a specific Java object instance. This
attribute will be monitored by OverView and events will be sent to the
visualization layer whenever the monitored object or attribute is modified.

• when describes triggers for events, based on actions performed by the entity.
start and finish designate if the event should be triggered at the beginning
or end of the method invocation (or a constructor). The declaration then

6

Desell, Iyer, Stephens and Varela

entity Actor is salsa.language.Actor {
unique by this.uan.toString();

when finish bind(UAN uan, UAL ual) send Creation(ual.toString());
when finish bind(UAN uan) send Creation(this.ual.toString());

when finish finalize() send Deletion();

when finish migrate(UAL ual) send Migration(ual.toString())
on exception MigrationException send Error(exception),
on exception MalformedUALException send Error(exception);

when finish send(Message message)
send Communication(message.getTargetString());

}

Fig. 3. ESL example for SALSA Actors.

proceeds to describe the event sent to the visualization, as well as the values
that the event will contain.

• on exception specifies what action to take if an exception is thrown by
the watched method or constructor (optional).

The six events that can be specified with a when declaration are:

• creation(String containerId) This specifies the creation of an entity,
taking the container or entity that is contained by as an argument.

• deletion() This specifies a deletion of an entity.

• migration(String targetContainerId) This specifies that an entity has
moved from one container to another, taking the container which the entity
has moved to as an argument.

• communication(String entityId) This specifies that communication oc-
curred between two entities, and takes the entity communicated with as an
argument.

• error(Exception exception) This specifies that an error occurred at some
entity and takes the exception thrown as an argument.

• update(String item, Object value) specifies that the state of an entity
has been updated, along with the value that was updated and the identifier
for that object. These events are usually used behind the scenes by the
watch declaration. The arguments for this event are the name of the part
of the state that was changed, as well as the value that is has now become.

Figure 3 shows a sample entity specification for the actor model [1], using
the SALSA programming language [15]. In the SALSA language, an actor
binds to a location and enters the distributed system. After binding, the
actor can migrate to other locations in the system. OverView requires IDs

7

Desell, Iyer, Stephens and Varela

Fig. 4. Program flow for a JVM with a synchronous IPA

for entities be strings. The specification also designates how exceptions are
sent to the visualization layers. The this keyword denotes that the following
identifiers are values or method locals to that entity. If this isn’t used, the
first identifier is assumed to refer to the arguments of the method which sends
triggers an event.

5 Preliminary Implementation and Results

5.1 ESL and Byte-code Instrumentation

The OverView plug-in utilizes the JJTree software to parse the ESL and in-
struments the appropriate Java classes, inserting the appropriate profiling
statements for the various events in the ESL. These profiling statements con-
sist of passing information about the above events to the IPA. This allows
the OverView plug-in to visualize programs for which the source code is not
readily available, as long as there are the appropriate entity specifications.

5.2 Instrumented Profiling Agent

The instrumented profiling agent accepts profiling information from the enti-
ties in its JVM through the instrumented profiling statements. It then forwards
this information to every registered OverView plug-in. Entity creation, dele-
tion and migration, as well as error reporting are all immediately forwarded
to the OverView plug-ins to provide an accurate picture of the distributed
system. These events are typically less frequent than entity updates and com-
munication, which are queued at the IPA and periodically sent in groups to
the plug-ins, to limit the load on the plug-ins. Upon connection, the OverView
plug-in specifies the frequency at which communication events are sent. The

8

Desell, Iyer, Stephens and Varela

Fig. 5. Program flow for a JVM with an asynchronous IPA

OverView plug-in sends requests for the state of an entity as needed, retriev-
ing the information from the IPA. This approach is very unintrusive as it does
not block the JVM and only retrieves information about individual entities,
rather than requiring every instance of an update event to be reported to the
plug-in. Optionally, an OverView plug-in can request all update events to
be forwarded to its data collector, so that the update events are stored when
historic data is created.

The IPA and data collector are implemented using the SALSA program-
ming language [15], and communicate using asynchronous message passing via
SALSA’s remote message sending protocol (RMSP). This allows for IPAs and
data collectors to easily send events between themselves, providing synchro-
nization only when it is required. SALSA programs are precompiled into Java
code, and profiling statements consist of invoking static methods on the IPAs
generated code.

When the byte-code is instrumented, the developer can specify the IPA
to operate either synchronously or asynchronously. To maintain a consis-
tent global state, creation, deletion, update, migration and error events must
operate synchronously (shown in Figure 4), blocking until the plug-in has re-
ceived the event until that JVM can continue executing the program. Most
debuggers based on the JPDA operate in this manner; however it can severely
impact the operation of the distributed program. To fix this problem, the
IPAs can operate asynchronously (shown in Figure 5), sending the event and
allowing the JVM to continue operating. This might result in the global state
becoming inconsistent temporarily, if some creation, deletion, migration or
error events are received out of order. These occurrences are rare and sending
events asynchronously can result in a significantly less overhead in providing
a visualization.

9

Desell, Iyer, Stephens and Varela

Fig. 6. OverView’s Visualization Architecture

5.3 Event Mapper and Historic Data

Events are retrieved by the data collector, which forwards them on to the
event queue. These events are passed on to the visualization state, which
takes events and determines the current world view. Additionally, the event
queue passes groups of events to the historic data and stored to disk. This is
done periodically when load on the plug-in is low, so not to impede the speed
of the visualization. At the visualization’s refresh rate, the visualization writer
retrieves the current global state of the distributed program. Then it paints
the world view, representing the global state as determined by the plug-in’s
settings.

5.4 World View

The OverView plug-in can display a view of a distributed program in several
ways. Entities are displayed as circles, which can be clicked on to display
state data, determined by update events and retrieved from the IPA where
that entity is located. Entities are located within other entities, displayed
as squares. These act as containers for entities, which may migrate between
these containers. Communication between entities is represented by lines,
which are color mapped blue, for low amounts of communication, to red, for
high amounts of communication. The width of a line determines the average
time for communication between the entities: wide, for quick communication,
to thin, for slow communication. Entities are colored blue when operating
without error, and colored red when an error event has occurred. The entity
may be clicked on to determine the error. An example of this world view is
shown at Figure 7.

10

Desell, Iyer, Stephens and Varela

Fig. 7. Snapshot of the OverView World View.

Fig. 8. Snapshot of the OverView History View.

As the OverView plug-in visualizes a distributed program, the developer
can start and stop recording events to create historic data. This historic data
can be viewed later in the same manner as the online visualization, as shown
in Figure 8, with an additional scroll bar that can pause the visualization
and move it forward or backward in time. This allows a developer to study
what occurred in the distributed program in a slower more fine grained way,

11

Desell, Iyer, Stephens and Varela

especially if all update events are requested.

5.5 Actor Visualization with OverView

We tested our implementation on distributed programs written using the
SALSA programming language [15]. The OverView prototype was able to
successfully visualize actor creation, deletion and migration in the different
trail runs. It could also capture the state of actors, which was specified as the
actor’s mailbox size. Figure 7 displays a screen shot of a SALSA program
running on five different containers, specifically theaters, displayed as squares.
The entities within this system are actors, displayed as circles.

Figure 8 shows a screen shot of the same SALSA program, visualized off
of the historic data gained from the online visualization. The scroll bar at
the bottom allows the developer to pause or move the visualization forward
or backward in time. As the history view progresses, more actors are created
and migrated resulting in the same view as in Figure 7.

6 Discussion

Dynamic visualization of distributed systems presents many challenges includ-
ing:

• the ability to visualize high-level concurrency abstractions from events pro-
duced by lower-level objects received from distributed virtual machines.

• the need for non-intrusiveness, that is, any instrumentation inserted into
distributed system components for visualization purposes should not signif-
icantly alter the behavior of the distributed system as a whole.

• the need to scale up to a large number of interconnected nodes but at the
same time provide a unified view of the distributed system.

• the synchronization of the visualization tool and the distributed system,
so that dynamic reconfigurations in the system performed as a result of
load balancing or fault-tolerance policies get reflected appropriately and in
a timely fashion at the visualization layer.

In this paper, we have described our preliminary work on OverView, an
Eclipse extension providing a generic framework for online visualization of
dynamically reconfigurable Java-based distributed systems. The key to gener-
icity has been to provide an entity specification language enabling developers
to map high-level abstractions into lower-level events. As a result of this
generic language approach, visualization of distributed systems can be per-
formed at a high-level and can scale up since only events which are relevant
to the visualization purposes need to be instrumented.

We have tested our framework with distributed programs implemented in
SALSA, a language based on the actor model that produces Java code. We
have successfully visualized critical dynamic reconfiguration aspects of SALSA

12

Desell, Iyer, Stephens and Varela

programs such as actor creation and migration. Work remains to be done in
developing and testing specifications for visualizing more fine-grained opera-
tions such as message passing. We also need to create entity specifications for
additional concurrency models to test our framework’s genericity. Future work
includes evaluating in an objective and measurable manner the effectiveness,
performance and scalability of the proposed visualization framework.

OverView not only enables the visualization of distributed systems during
run-time, but also enables experimentation with new language constructs for
high-level distributed systems programming. Programming abstractions for
coordination may include hierarchical actor groups [14] and different notions
of distributed transactions [5]. The ability to control and manipulate the
components of these systems at run-time is also an important and desirable
feature; the architecture described here presents a highly extensible first-step
towards that eventual goal.

7 Acknowledgements

We would like to acknowledge Vivek Sarkar, Wim DePauw and Kaoutar El-
Maghraoui for their help and comments on this research. This work was also
supported in part by two IBM Eclipse Innovation awards.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

[2] B. Alpern, J. Choi, T. Ngo, M. Sridharan, and J. Vlissides. A Perturbation-
Free replay platform for Cross-Optimized multithreaded applications. In
15th International Parallel and Distributed Processing Symposium (IPDPS’01),
pages 23–23, April 2001.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures: First International Conference,
FOSSACS ’98, pages 140–155. Springer-Verlag, Berlin Germany, 1998.

[4] M. P. Consens, M. Z. Hasan, and A. O. Mendelzon. Visualizing and querying
distributed event traces with hy+. In W. Litwin and T. Risch, editors,
Applications of Databases, First International Conference, ADB-94, Vadstena,
Sweden, June 21-23, 1994, Proceedings, volume 819 of Lecture Notes in
Computer Science, pages 123–141. Springer, 1994.

[5] J. Field and C. Varela. Toward a programming model for building
reliable systems with distributed state. In Proceedings of the First
International Workshop on Foundations of Coordination Languages and
Software Architectures (FOCLASA)., Brno, Czech Republic, August 2002.

13

Desell, Iyer, Stephens and Varela

[6] R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay of distributed
java applications. In 14th International Parallel and Distributed Processing
Symposium (IPDPS’00), pages 219–228, May 2000.

[7] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic query-based debugging.
Lecture Notes in Computer Science, 1628:135–160, 1999.

[8] R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203–246.
Springer-Verlag, 1993.

[9] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang.
Software visualization, state-of-the-art survey. LNCS 2269, 2002.

[10] S. P. Reiss. Jive: Visualizing java in action, personal communication. In ICSE,
May 2003.

[11] M. Sefika, A. Sane, and R. Campbell. Architecture-Oriented Visualization. In
Proc. ACM Conf. on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), volume 31:10, pages 389–405, 1996.

[12] G. Sevitsky, W. D. Pauw, and R. Konuru. An information exploration tool
for performance analysis of java programs. In Technology of Object-Oriented
Languages and Systems (TOOLS Europe 2001), March 2001.

[13] R. Snodgrass. A relational approach to monitoring complex systems. ACM
Transactions of Computer Systems, 6:2:157–196, May 1988.

[14] C. Varela and G. Agha. A Hierarchical Model for Coordination of Concurrent
Activities. In P. Ciancarini and A. Wolf, editors, Third International
Conference on Coordination Languages and Models (COORDINATION
’99), LNCS 1594, pages 166–182, Berlin, April 1999. Springer-Verlag.
http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

[15] C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.

[16] R. J. Walker, G. C. Murphy, B. N. Freeman-Benson, D. Wright, D. Swanson, and
J. Isaak. Visualizing dynamic software system information through high-level
models. In Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 271–283, 1998.

[17] P. Wojciechowski and P. Sewell. Nomadic pict: Language and infrastructure
design for mobile agents. In First International Symposium on Agent Systems
and Applications (ASA’99)/Third International Symposium on Mobile Agents
(MA’99), Palm Springs, CA, USA, 1999.

14

	Introduction
	Related Work
	Visualization Architecture
	Entity Specification Language
	Preliminary Implementation and Results
	ESL and Byte-code Instrumentation
	Instrumented Profiling Agent
	Event Mapper and Historic Data
	World View
	Actor Visualization with OverView

	Discussion
	Acknowledgements
	References

