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Abstract

In-situ analytics 1s becoming an 1integral part of the simulation pipeline.
As only the features of interest are stored during in-situ analysis, features
can be extracted at a much higher temporal frequency enabling deeper
scientific insight.

In this work, we analyze 1n-situ analysis workflows 1n terms of scalability
and power efficiency that use the same compute resources as the on-going
simulation. For this study, we make use of in-situ feature extraction using
segmented merge tree[1] run at full machine scale on Titan.

Scientific Impact of In-Situ Analysis

Large scale in-situ feature extraction of S3D simulations :

Extinction regions from a Lifted Ethylene Jet Flame Burning cells in Homogeneous
simulation used to investigate turbulent flames in  Charge Compression Ignition
direct injection stratified spark ignition engines for  (HCCI) in which a lean, premixed

commercial boilers. fuel-air mixture is compressed

until it ignites spontaneously in

many separate locations.
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Number of Processes

Time spent by simulation to compute 50 S3D timesteps
H Time required by in-situ analysis using 8-way merge strategy

Time required to store analysis results

Segmented Merge Tree
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A merge tree tracks the evolution of connected components of the
domain as the function range is swept from oo to —oo.

In-Situ Distributed Merge Tree Computation

The computation 1s composed of the following phases in k-way merge
hierarchy:
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1. Local Compute - Compute a local merge tree for each decomposed data
block

2. Join — Merge the shared boundaries of neighboring local trees

3. Correction — Correction of local trees based on joined boundary

. Simulation

In-Situ Analysis Workflows

Using the same compute resources as the
simulation:

Analysis
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Performance and Scalability

HCCI rr_OH field - 1120x1120x1120
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Power Analysis

Fine grained power measurements of appropriately downscaled problem
using the CAPER cluster at Rutgers University

HCCI Lifted Flame
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* Using fewer cores per node and on-node data movement is the
optimum in-situ analysis workflow 1n terms of scalability as well as
power efficiency

Future Work

* In-situ merge tree computation for Adaptive Mesh Refinement (AMR)
meshes

* Resilient merge tree computation

* (Quality vs. Resiliency trade-offs for in-situ analysis
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