

Scalability and Power Efficiency of In-Situ Analysis Workflows

CEDMAV

Collaborators: Attila Gyulassy¹, Sidharth Kumar¹, Janine C. Bennet³, Hemanth Kolla³, Jacqueline Chen³, Ivan Rodero⁴, Manish Parashar⁴

¹ SCI Institute, University of Utah, ² Lawrence Livermore National Laboratory, ³ Sandia National Laboratory, ⁴ Rutgers University

Abstract

In-situ analytics is becoming an integral part of the simulation pipeline. As only the features of interest are stored during in-situ analysis, features can be extracted at a much higher temporal frequency enabling deeper scientific insight.

In this work, we analyze in-situ analysis workflows in terms of scalability and power efficiency that use the same compute resources as the on-going simulation. For this study, we make use of in-situ feature extraction using segmented merge tree[1] run at full machine scale on Titan.

Scientific Impact of In-Situ Analysis

Large scale in-situ feature extraction of S3D simulations:

Extinction regions from a **Lifted Ethylene Jet Flame** simulation used to investigate turbulent flames in direct injection stratified spark ignition engines for commercial boilers.

Burning cells in Homogeneous Charge Compression Ignition (HCCI) in which a lean, premixed fuel-air mixture is compressed until it ignites spontaneously in many separate locations.

- Feature extraction at every 50th time step instead of 500th time step 10x increase in analysis frequency
- Takes less than 1% of the simulation time for every 50 time steps
- Enables capture of intermittent and short lived features

Segmented Merge Tree

A merge tree tracks the evolution of connected components of the domain as the function range is swept from ∞ to $-\infty$.

In-Situ Distributed Merge Tree Computation

The computation is composed of the following phases in k-way merge hierarchy:

- 1. Local Compute Compute a *local merge tree* for each decomposed data block
- 2. Join Merge the shared boundaries of neighboring local trees
- 3. Correction Correction of local trees based on joined boundary

In-Situ Analysis Workflows

Using the same compute resources as the simulation:

- 1. Using all the compute cores used by the simulation
- 2. Using fewer cores per node and onnode data movement
- 3. Using subset of the nodes and offnode data movement

Simulation

Performance and Scalability

Test System:

Titan Cray XK7 at ORNL

- Using all cores per node gives best performance at lower node counts
- At higher node counts, reduction in cores used per node gives better performance and scalability

Power Analysis

Fine grained power measurements of appropriately downscaled problem using the CAPER cluster at Rutgers University

• Using fewer cores per node and on-node data movement is the optimum in-situ analysis workflow in terms of scalability as well as power efficiency

Future Work

- In-situ merge tree computation for Adaptive Mesh Refinement (AMR) meshes
- Resilient merge tree computation
- Quality vs. Resiliency trade-offs for in-situ analysis

References

[1] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen, and P.-T. Bremer. In-situ feature extraction of large scale combustion simulations using segmented merge trees. *In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '14*