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Executive Summary 

The Department of Energy’s Office of Science continues to make significant strides in providing for the 

future of the nation’s energy and economic security. It has created unmatched scientific facilities and 

installations to perform work in areas ranging from high-energy physics to energy-related biological and 

environmental research built on foundations in genomic science, climate modeling, contamination and 

transport modeling, and related interdisciplinary sciences. To capitalize on the investments made in these 

installations, DOE continues to develop the world’s pre-eminent computing facilities, planning extreme 

scale computing capabilities, capable of computing at rates of 100 petaflops per second and greater, that 

will serve the nation as we move forward in the 21st century. This delivery of forefront computational 

facilities to scientists has enabled a number of leading scientific advances relevant to the Office of 

Science. The success of high-performance computing, however, involves not only the construction and 

effective use of advanced computational facilities but also the development of tools to effectively analyze 

the flood of data produced by these facilities. Yet the development of such tools has lagged, creating a 

significant bottleneck to scientific discovery. Thus, in addition to advancing computation and simulation, 

we must develop modern data analysis techniques and visualization tools. Such developments will be the 

next important computational contributions to enable scientific discovery. 

 

Earlier this year the Department of Energy (DOE) Office of Advanced Scientific Computing Research 

(ASCR) convened a workshop to report on the fundamental research in visualization and analysis 

necessary to enable knowledge discovery from computational science applications at extreme scale. The 

goal of this report is to identify the most critical issues in visualization and analysis and to suggest future 

research efforts to address these issues. 

 

Principal Finding: Scientific data analysis, visualization, and data management have evolved over the 

past few decades as a result of research funding from the DOE, the National Science Foundation (NSF), 

the Defense Advanced Research Projects Agency (DARPA), and other agencies. Today’s ability to 

understand and explore spatial-temporal data and nonspatial data is the result of this legacy. However, 

datasets being produced by experiments and simulations are rapidly outstripping our ability to explore and 

understand them, and there is, nationwide, comparatively little basic research in scientific data analysis 

and visualization for knowledge discovery. 

 

Suggested Action: We must restart basic research in scientific data analysis and visualization as a first 

class citizen within the DOE Office of Advanced Scientific Computing Research. A strong basic research 

program is vital to our continued success and competitiveness in the international scientific research 

endeavor. Fundamental advances must be made in visualization to exploit the potential of extreme scale 

simulations and large datasets derived from experiments. We must also pay much greater attention to 

human factors; for example, by measuring which visualization techniques are most useful to the end user. 

We need to treat visualization itself as an experimental science, not just a technology. 
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1 Introduction 

Visualization and analysis methods are the principal means of understanding data in many areas of 

science. Science is increasingly data-driven and multidisciplinary; both experiments and simulations are 

producing petascale datasets, and larger datasets are on the horizon. But data alone does not suffice; it 

must be transformed into knowledge to be of any real value. Visual scientific data analysis and 

representation are central to this transformation—a critical link in the chain of knowledge acquisition. 

 

Humans are innately visual creatures; indeed, half of our brains are devoted to processing visual 

information. In computational terms, vision is by far our highest-bandwidth data path. Thus, visual data 

exploration is fundamental to our ability to interpret models and understand complex phenomena. We use 

our visual perception and cognition to detect patterns, assess situations, and rank tasks. Visual data 

exploration is one of the most important ways to reduce and refine data streams, enabling us to winnow 

huge volumes of data—an increasingly critical operation. Visual data exploration has thus become a 

cornerstone of the scientific enterprise. 

 

Visual data exploration is, however, clearly underappreciated. One reason is the tendency to view 

computer graphics and visualization mainly as a way to present scientific results. But the field of visual 

data exploration is much more than “pretty pictures.” The real power comes from the integration of 

interactive visual representation into the end-to-end scientific discovery process, coupling the spectacular 

visual understanding of the human mind with the scientific problem at hand. 

 

Visual data analysis, facilitated by interactive interfaces, enables the detection and validation of expected 

results while enabling unexpected discoveries in science. It allows for the validation of new theoretical 

models, provides comparison between models and datasets, enables quantitative and qualitative querying, 

improves interpretation of data, and facilitates decision-making. Scientists can use visual data analysis 

systems to explore “what if” scenarios, define hypotheses, and examine data under multiple perspectives 

and assumptions. They can identify connections between large numbers of attributes and quantitatively 

assess the reliability of hypotheses. In essence, visual data analysis is an integral part of scientific problem 

solving and discovery. 

 

The Department of Energy has been funding visualization research for many years, both in Advanced 

Scientific Computing Research (ASCR) and in the other Offices in the Office of Science as well as in the 

National Nuclear Security Administration (NNSA). The knowledge, techniques, and infrastructure 

enabled by this funding have been key to DOE’s success in many areas of science. Thus, visualization, 

and data exploration more generally, could be seen as a well-worn path, fully integrated into the scientific 

workflow. Such a view, however, misses the point. The coming of peta- and exascale computing and data 

acquisition from high-bandwidth experiments across the sciences is creating a phase change. Our ability 

to produce data is rapidly outstripping our ability to use it. As Herbert Simon, Nobel Laureate in 

economics, noted: 

 

A wealth of information creates a poverty of attention and a need to allocate it efficiently. 

 

This statement succinctly summarizes the issue with peta- and exascale datasets. We have far more data 

than we can explore in a lifetime with current tools. 

 

One way of viewing this situation is by analogy with a bicycle. A bicycle is an elegant and refined tool, 

perfect for exploring a neighborhood. It does not work at all for exploring continents and oceans; for that, 

one needs a different kind of tool. In a like manner, the visualization and data exploration tools developed 

over recent decades with funding from DOE, NSF, and other agencies have served us admirably with 

gigabyte and even terabyte datasets. As we reach the peta- and exascale, however, they will no longer 
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suffice. Yet the number of new ideas in the research pipeline is comparatively meager. A high percentage 

of current visualization and data exploration funding amounts mainly to direct applications support, as 

opposed to pioneering the novel approaches that will be needed as we enter the exascale era. 

 

To begin grappling with this broad issue, a group of scientists and researchers met under the auspices of 

ASCR in Salt Lake City on June 7–8, 2007. The goal was to discuss the coming “data tsunami” and the 

issues involved in data exploration, data understanding, and data visualization at the petascale and 

beyond. The Office of Science’s notable success in discovering new science and deploying both 

experiments and computational simulation to great effect suggests that much of what the Office of 

Science is already doing is working very well. Yet there was a general feeling that the phase change 

mentioned above is about to create an unpleasant surprise in the form of our inability to cope with vast 

amounts of data about to be produced. Charting a roadmap for addressing this problem is a challenging 

exercise; this document is intended, at most, as a foundation for a roadmap. But along with the 

opportunities for discovering important new science with peta- and exascale data, there is an increasing 

sense of urgency—we really don’t yet know how to cope with data at this scale. Without better techniques 

and a new mindset, the data streams so arduously created by researchers in all areas of science will simply 

fall on the floor. 
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The spectrum synthesis of the Incite model compares 

favorably to observations and may be the first explosion 

model that “naturally” explains the transition from 

deflagration to detonation in thermonuclear supernovae. 

(Image courtesy T. Plewa, ASC/Alliance Flash Center, 

University of Chicago, and D. Kasen, Johns Hopkins 

University and STScI.)  

2 Mission Needs 

The Department of Energy has a broad, 

multifaceted mission. Visualization, data 

analytics, and data exploration are 

crosscutting themes powering the research 

and policy activities within DOE. The 

paragraphs below highlight some of the many 

roles that visualization plays as a core 

computational science technology. 

2.1 Computational Astrophysics  

Petascale computing on the near horizon and 

exascale computing over the next decade will 

enable a quantum leap in complexity in 

simulating physical systems. Such 

complexity will motivate a commensurate 

leap in the priority placed on visualization 

research and the development of visualization 

tools that will enable scientific discovery in 

these systems. Without visualization, 

discovery will not be possible. The challenges 

are daunting. The datasets are expected to 

increase in size from hundreds of terabytes to 

petabytes per simulation. The dimensionality 

of the datasets is expected to increase well 

beyond the three dimensions that characterize 

these systems spatially. Likewise, the 

datasets are expected to include an ever 

increasing number (tens to hundreds) of 

variables of different types. Such challenges 

can be met only through a dramatic increase 

in the priority placed on visualization 

research and funding for it. 

2.1.1 Supernovae Explosion Modeling 

We are creating supernovae explosion model datasets comprising dozens of variables per grid cell 

representing physical, chemical, and radiation attributes on high-resolution, adaptive, time-varying grids. 

For these datasets, visual data analysis will be a necessity: we need to visualize fluid flow and structures 

with varying degrees of transparency. We also need movies, not just for presentations and for TV shows, 

but because the time aspect of the simulations is often even more essential than the spatial one for 

understanding the results. The enormity of the datasets poses a challenge, and that challenge will become 

more pronounced as we begin to compare the results of hundreds or thousands of such models, which 

consist of time-varying 3D models as well as multiband light curves, with the hundreds of thousands of 

supernovae observed by missions such as the Large Synoptic Survey Telescope and the Joint Dark 

Energy Mission. 

 

In the future, the ability to perform comparative visual analysis of large collections of observed and 

simulated data is crucial for validating the correctness of supernovae models. – Stan Woosley, PI of 

SciDAC Computational Astrophysics Consortium 
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2.1.2 Cosmic Microwave Background Data Analysis 

The Cosmic Microwave Background (CMB) radiation offers the earliest possible image of the Universe, 

as it was only 400,000 years after the big bang. Over the past 40 years observations of the CMB 

temperature have provided crucial tests of cosmological theories and have constrained many of the 

fundamental parameters of the preferred inflationary big bang models to very small ranges. In conjunction 

with supernovae results they have led to the astonishing conclusion that 95% of the universe is composed 

of forms of matter and energy that we know nothing about. 

 

The new frontier in CMB research is measuring its polarization modes. These signals are orders of 

magnitude fainter than the temperature and hence require orders of magnitude larger datasets to achieve 

the necessary signal-to-noise ratio in the data. Experiments such as the joint ESA/NASA Planck satellite 

mission will gather datasets whose analysis will need peta- to exascale computing.  

 

Visual data exploration will play a key role in providing an easily understandable view of data and data 

analysis results, and will be a part of a larger set of community-wide capabilities that include both data 

management and high performance computing. – J. Borrill, LBNL 

 
The 50,000,000-pixel full-sky temperature and Q- and U-mode polarization maps, and the 3000-multipole TT, 

TE, and EE angular power spectra recovered from them, obtained at NERSC from the first-ever analysis of all of 

the data from a single Planck frequency, consisting of 75 billion simulated observations. (Images courtesy of J. 

Borrill, Planck Science Team, LBNL.) 
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2.2 Climate Modeling 

Climate models provide an integrated understanding 

of the climate system and provide detailed projections 

of future climate changes to policy makers. 

Visualization plays an important role here. For much 

of this effort, the workhorse visualizations are 

typically global maps of changes in surface 

temperature, precipitation, winds, ocean currents, and 

other relevant fields. Time series of important modes 

of variability such as El Niño are also used. In 

coming years, visualization research and 

development will be important in trying to reduce the 

dimensionality of the analysis space for Earth system 

models that simulate the carbon, sulfur, and nitrogen 

cycles. Moreover, the large datasets produced by new 

climate models will require high-performance parallel 

and distance visualization tools that can enable 

scientists to interact with huge volumes of data and 

select manageable subsets for further exploration. 

 

 

The large datasets produced by new climate models will require high performance parallel and distance 

visualization tools that can enable scientists to interact with huge volumes of data and select manageable 

subsets for further exploration. – Phil Jones, Los Alamos National Laboratory 

2.3 Magnetically Confined Fusion 

Fusion has the potential to provide a long-term, 

environmentally acceptable source of energy for the 

future. While research during the past 20 years 

indicates that it will likely be possible to design and 

build a fusion power plant, the major challenge of 

making fusion energy economical remains. Improved 

simulation and modeling of fusion systems using peta- 

and exascale computers are essential to achieving the 

predictive scientific understanding needed to make 

fusion practical. Integrated simulation of magnetic 

fusion systems involves the simultaneous modeling of 

the core plasma, the edge plasma, and the plasma-wall 

interactions. Each region of the plasma has anomalous 

transport driven by turbulence, abrupt rearrangements 

of the plasma caused by large-scale instabilities, and 

interactions with neutral atoms and electromagnetic 

waves. Many of these processes must be computed on 

short time and space scales, while the results of 

integrated modeling are needed for the whole device on long time scales. The mix of complexity and 

widely differing scales in integrated modeling results in a significant computational challenge.  
 

In fusion, visualization could help us understand the specifics of onset of the H-mode in tokamaks and the 

formation of hotspots in electromagnetic structures. -- John Cary, Tech-X Corporation 

 
Carbon dioxide plumes from a terrestrial 

biogeochemistry model in the community climate 

system model (CCSM). Understanding the 

relationships between the carbon and nitrogen 

cycles in coupled climate models is critical to 

understanding long time-scale climate change. 

(Image courtesy of Oak Ridge National 

Laboratory.) 

 
Lines of magnetic flux confining a simulated 

tokamak plasma within the SIESTA fusion 

equilibrium code. (Image courtesy of Oak 

Ridge National Laboratory.) 
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2.4 Combustion Simulation 

High-fidelity combustion simulations provide 

benchmark data to develop predictive models 

used to optimize the design of fuel efficient, 

clean burning, advanced low-temperature engine 

concepts using new, diverse fuel sources of the 

21st century, such as oil sands, oil shale, and 

biodiesel fuels that are carbon neutral and hence 

do not contribute to the greenhouse effect. The 

data resulting from peta- and exascale 

combustion simulations are both multiscale and 

complex, and the sheer volume of raw data defies 

traditional methods of visualization and analysis 

for knowledge discovery; moreover, data rates 

are projected to increase by tenfold over the next 

few years. A new paradigm for knowledge 

discovery that integrates the following key 

components is needed to successfully extract 

meaning from datasets resulting from upcoming simulations: parallel, efficient, scalable feature-detection, 

segmentation, and tracking algorithms; parallel volume visualization of time-varying multivariate data 

and particles; feature-borne analysis software; and efficient parallel collective I/O. 

 

The data resulting from peta- and exascale combustion simulations are both multi-scale and complex, 

and the sheer volume of raw data defies traditional methods of visualization and analysis. –Jacqueline H. 

Chen, combustion researcher at Sandia National Laboratories  

2.5 Accelerator Design 

Particle accelerators are critical to research in many 

fields, including high energy physics, nuclear 

physics, materials science, chemistry, and the 

biosciences. Accelerators have also been proposed 

that address national needs related to energy, the 

environment, and national security. The 3D, 

multiscale, nonlinear, and many-body aspects of 

accelerator design problems and the complexity 

and immensity of the associated computations add 

up to extreme technical difficulty. SciDAC’s 

accelerator modeling project is providing scientists 

with advanced simulation tools for petascale 

computers that can perform detailed modeling of 

plasma accelerator experiments in their full scale 

for the first time. Furthermore, these tools are 

building the foundation for codes that will be able 

to design and test future experiments in high 

fidelity in advance of their construction. 

 

Visualization helps us better see and understand 

the trapping and acceleration of particle beams in 

laser-plasma interactions. – John Cary, Tech-X 

Corporation  

 
Multivariate visualization of a turbulent combustion 

simulation. (Image courtesy of the University of 

California, Davis and Sandia National Laboratories.) 

This image shows electrons that are "trapped," or 

being accelerated, in a Plasma-Wakefield particle 

accelerator simulation. (Image courtesy of C. 

Geddes and C. Siegerist, LBNL.) 
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3 Research Areas 

A strong basic visualization and analysis research program is vital to the continued success of the 

scientific research endeavor. Fundamental advances must be made to extract meaning from large and 

complex datasets derived from experiments and from upcoming petascale and exascale simulation 

systems. 

3.1 Fundamental Algorithms 

Effective data analysis and visualization tools in support of predictive simulations and scientific 

knowledge discovery must be based on strong algorithmic and mathematical foundations and allow 

scientists to reliably characterize salient features in their data. New mathematical methods in areas such as 

topology, high-order tensor analysis, and statistics will constitute the core of feature extraction and 

uncertainty modeling using formal definition of complex shapes, patterns, and space-time distributions. 

This will benefit a wide variety of applications ranging from climate modeling to fusion and nuclear 

physics and will support petascale to exascale scientific simulations. 

 

Findings: Visualization is more than a “pretty picture.” Effective visual data analysis must be based on 

strong mathematical foundations to reliably characterize salient features and generate new scientific 

knowledge. 

 

Suggested Action: Basic research in developing fundamental mathematical methods such as topology, 

statistics, high-order tensors, uncertainty, and feature extraction must be established to tackle 

tomorrow’s exascale visualization problems. 

3.1.1 Robust Topological Methods 

Topological methods are becoming increasingly important in the development of advanced data analysis 

because of their expressive power in describing complex shapes at multiple scales. For instance, local and 

global trends in the flow of CO2 are crucial to understanding the interaction of ocean models with 

atmospheric models, the effectiveness of carbon sequestration, and the effects of climate change in 

general. The recent introduction of robust combinatorial techniques for topological analysis has enabled 

the use of topology, not only for presentation of known phenomena but for the detection and 

quantification of new features of fundamental scientific interest. 

3.1.2 High-Order Tensor Analysis 

Tensors are general representations of scalars and vector quantities used to describe many physical 

properties, such as fluid flows and strength of materials. The visualization community has focused mainly 

on 0
th

-order and 1
st
-order tensor fields, and only more recently on 2

nd
-order tensor fields. Higher-order 

tensors such as 4
th

-order stiffness tensors found in geomechanics or 6
th

-order longitudinal structure 

function in statistical vortex flows found in plasma physics are largely neglected by the visualization 

community. The challenge of visualizing higher-order tensor fields is similar in some ways to the 

challenge of visualizing multivariate datasets. Both deal with a high number of interrelated values at each 

location, where the relationships of the variables need to be highlighted, while mathematical properties 

and invariants need to be preserved in tensor fields. Novel methods must be developed to help scientists 

understand such datasets, possibly including glyph-based techniques, topological representations via 

critical region analyses, or continuous field representations. 

3.1.3 Statistical Analysis 

Our current data analysis capabilities lag far behind our ability to produce simulation data or record 

observational data. A particular gap exists in the mathematics needed to bring analysis and estimation 

methodology into a data-parallel environment. Data parallel solutions that can support, as well as use, 
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exascale resources require new mathematics that consider an entire estimation or analysis problem in a 

specific application for developing scalable data-parallel algorithms in data analysis. Although scalable 

parallel analysis methods often will work across specific applications, generalized tools for this purpose 

are lacking. Browsing or looking at data is no longer possible as we approach a petabyte, so there is an 

enormous need for methods to dynamically analyze, organize, and present data by variability of interest 

across all application domains. Solutions to these problems will likely come from dynamically 

considering high-dimensional probability distributions of quantities of interest. This requires new 

contributions from mathematics, probability, and statistics. 

3.1.4 Feature Detection and Tracking 

The scaling of simulations to ever finer granularity and timesteps brings new challenges in visualizing the 

data that is generated. It is crucial to develop smart, semi-automated visualization algorithms and 

methodologies to help filter the data or present “summary visualizations” to enable scientists to begin 

analyzing the immense data following a more top-down methodological path. A key requirement for 

effective sharing and querying of scientific data is to develop a solid mathematical foundation to define 

and extract features and track their evolution over time. Also needed are formal semantic schemas, 

taxonomies, and ontologies for describing, characterizing, and quantifying features and for highlighting 

areas of interest in massive time-varying data, thereby giving the scientists a handle on where to look or 

to make more high-level queries. Feature-based techniques are also important for analyzing the results of 

different simulations and making comparisons between simulations and experimental data. Once features 

and their evolution are identified and measured, tools are needed to enable researchers to identify 

interfeature relationships and evolutions or configurations of a set of objects and their interactions.  

3.1.5 Uncertainty Management and Mitigation 

A significant problem faced by the Office of Science simulation efforts is the robust treatment of 

uncertainty. Numerical simulations are rife with sources of uncertainty, which can be introduced in the 

form of numerical imprecision, inaccuracy, or instability. Predictions and forecasting inherently contain 

uncertainty arising from the variability in the physical processes under study. Scientific experiments and 

measurements introduce uncertainty in the form of calibration errors, differences in repeated 

measurements, and the like. Visualization of petascale datasets also can introduce uncertainty during 

processing, decimation, summarization, and abstraction as an artifact of creating much-condensed 

representations of the data. 

 

The ability to fully quantify uncertainty in high-performance computational simulations will provide new 

capabilities for verification and validation of simulation codes. Having a robust mathematical framework 

for tracing the sources of uncertainty and its propagation throughout the simulation process turns 

simulation into a strong predictive capability. Handling uncertainty must be an end-to-end process, where 

the different sources of uncertainty are identified, quantified, represented, tracked, and visualized together 

with the underlying data. Hence, uncertainty representation and quantification, uncertainty propagation, 

and uncertainty visualization techniques need to be developed in order to provide scientists with credible 

and verifiable visualizations. 



 12 

3.2 Complexity of Scientific Datasets 

Scientific simulation codes are producing data at exponentially increasing sizes, but spatial resolution is 

only one of the axes by which datasets are expanding. As computational scales reach the petascale and 

extend into the exascale, simulation codes are also increasing in their temporal resolution, degree of code 

coupling, and extent of parametric exploration. Although some similarity may be leveraged, each of these 

scales requires research and expansion to enable new scientific discovery. 

 

Findings: Trends in scientific simulation—which include coupled codes, hierarchical computation and 

data models, extreme and varying scales of spatial and temporal resolution, and increasing numbers of 

variables to more faithfully represent physics and chemistry phenomena—present challenges that cannot 

be met by extrapolating existing approaches, known techniques, and familiar methodologies. 

 

Suggested Action: A concerted and long-term visual data understanding and representation research 

effort is a sound and crucial investment for providing the technologies needed to enable knowledge 

discovery on the complex, heterogeneous, multiresolution datasets projected to be produced by scientific 

simulations on peta- and exascale platforms. 

3.2.1 Multimodel Data Understanding 

One area of significant advancement in computational science in recent years enabled by more powerful 

computing platforms is multimodel codes. These codes, which play a significant role in SciDAC projects 

aiming to model complex facilities, such as fusion tokamaks and particle accelerators, and complex 

scientific phenomena, such as supernovae explosions and Earth system models, consist of combinations 

of codes each modeling some individual scientific regime. Data produced by one component is often used 

as input to another, resulting in an extremely complex and information-rich dataset. In other cases, input 

from instruments is combined with simulation results. Traditional approaches to visual data analysis have 

focused on data generated from a single code or code family. These approaches do not lend themselves to 

use on the complete systems simulated with such multimodel codes.  

 

New approaches to visual data analysis and knowledge discovery are needed to enable researchers to gain 

insight into this emerging form of scientific data. Such approaches must take into account the multimodel 

nature of the data; provide the means for a scientist to easily transition views from global to local model 

data; offer the ability to blend traditional scientific and information visualization; perform hypothesis 

testing, verification, and validation; and address the challenges posed by vastly different grid types used 

by the various elements of the multimodel code. Tools that leverage semantic information and hide details 

of dataset formats will be critical in enabling visualization and analysis experts to concentrate on the 

design of these approaches rather than becoming mired in the trivialities of particular data representations. 

3.2.2 Multifield and Multiscale Analysis 

In many scientific fields of study, computational models aim to simulate phenomena that occur over a 

range of spatial and temporal scales spanning several orders of magnitude. Those models also attempt to 

capture the interaction of multiple variables‚ often referred to as multivariate or multifield data. 

Visualization of multivariate or multiscale datasets is helping scientists discover hidden relationships 

among the data, as well as transient events (occupying a small fraction of simulation time) that have a 

profound influence on the outcome of the simulation.  

Unfortunately, while current visual data analysis technologies are capable of processing many types of 

adaptive, multivariate, multiresolution data, these technologies lack the ability to take into account 

various types of constraints that would improve their usability and applicability to a broader set of fields 

of study. Multiresolution techniques are needed to support zooming in to regions of interest, generating 

geometry with high accuracy where needed, and displaying animations that are short enough to match a 
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viewer’s desired context while providing sufficient detail for transient important events. For multifield 

data, visualization cannot simply map different variables to different visual parameters, as one will 

quickly run out of visual parameters and introduce a visual overload on the user, hampering the task of 

data understanding. We therefore need to bring in different approaches from visual analytics, projections 

and dimensionality reduction, database queries, feature detection, and novel visualization techniques. 

3.2.3 Time-Varying Datasets  

New challenges for scientists have emerged in the past several years as the size of data generated from 

simulations has experienced an exponential growth. One major factor contributing to the growth of data 

size is the increasingly widespread ability to perform very large scale time-varying simulations. Although 

intensive research efforts have been undertaken to enable visualization of very large datasets, most of the 

existing methods have not specifically targeted time-varying data. New visualization techniques and user 

interfaces must be developed to assist the user in understanding exascale time-varying multivariate 

datasets. Scientists must be able to interactively browse through different spatial and temporal scales, 

visualize and identify scientific phenomena of different temporal lengths, and isolate and track salient 

features in both time and space. Multiresolution spatial and temporal data management and encoding 

techniques need to be fully integrated with current and future visualization algorithms so that the scale 

and location of the time-varying data will be completely transparent to the visualization users. 

 
A series of 3D volume-rendering of a Type Ia supernova as hot nuclear ash erupts from the surface of the 

white dwarf progenitor. The blue surface shows an isocontour of the density of the white dwarf at 10 million 

grams per cubic centimeter and represents a length scale of roughly 2,000 kilometers in radius. (Image 

courtesy DOE-supported NNSA ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the 

University of Chicago and Argonne National Laboratory.) 
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3.3 Advanced Architectures and Systems 

Research into computational methods cannot stand alone without consideration of the computational 

platforms on which they depend. Emerging peta- and exascale architectures provide both a blessing and a 

curse: unprecedented computational power, but also the ability to generate results far faster than we can 

store—much less visualize—them. This change is as disruptive as the shift from vector to distributed 

memory supercomputers 15 years ago, which took years of effort to address. Software systems are 

simultaneously growing in complexity, and additional work is needed to enable scientists to integrate 

visualization and analytics tools into the scientific process. 

 

Findings: Upcoming system architectures are a significant departure from systems of the past decade. 

Current approaches for performing visualization and analysis are not well suited to the processing or 

storage capabilities of petascale and exascale architectures. Likewise, software environments 

surrounding these algorithms are not adequate for scientific discovery using these resources. 

 

Suggested Action: Sustained research in exploiting parallelism, in situ processing, data access, and 

distance visualization is necessary to adapt visualization and analysis techniques to the rapidly changing 

computational landscape in order to help scientists gain insight into their problem using advanced 

systems. 

3.3.1 Pervasive Parallelism 

Computer architectures are undergoing revolutionary change. In the near term, all computer architectures 

will involve parallelism on a single chip. In the longer term, all computer architectures will involve 

massive parallelism. For example, AMD and Intel have changed their product lines to include dual-core 

and quad-core processors, with roadmaps for continued increases in the number of cores. The 

Sony/Toshiba/IBM Cell Processor has eight stream processing cores in addition to a conventional scalar 

processor. Commodity GPUs now feature hundreds of processors. GPUs and CPUs are also being 

merged, which will enable tight coupling between applications and graphics. This is likely to be the 

biggest change to the PC platform in the past 20 years. 

 

We are entering an era of pervasive parallelism. As the number of transistors doubles, the number of 

cores will also double. This trend means that software of the future will be very different from the 

sequential programs of today. This revolution in computer architecture will impact the graphics and 

visualization enormously. The visualization pipeline as we know it today will likely be radically different 

in order to exploit the new architectures. These new architectures will also enable an entirely new class of 

interactive visualization applications. Since graphics is the main driving application for such high-

performing chips, it is critical that the graphics and visualization community actively participate in the 

research and development of these technologies. One key focus for near-term research is the integration 

of the CPU and GPU, and the programming models for each. Future architectures likely will be 

heterogeneous, with multiple kinds of processors on a single die. Visualization, which can use both 

multicore-CPU-style thread parallelism and GPU-style data parallelism, will play a major role in 

understanding the results from such heterogeneous systems. 

3.3.2 In Situ Processing 

As processing power grows, so does the amount of data processed and generated. Increased computation 

rates enable simulations of higher fidelity, which in turn yield more data. Unfortunately, storage system 

bandwidth is not increasing at the rate at which our ability to generate data is growing. The divide 

between what we are producing and what we are capable of storing is critical. It is already common for 

simulations to discard over 90 percent of what they compute. With storing data no longer a viable option, 

output processing and visualization must be performed in situ with the simulation. Collocating certain 
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visualization algorithms with simulation can simultaneously improve the effectiveness of the algorithm 

and maximize the information stored in the data. For example, saliency analysis can help the simulation 

make better decisions about what to store and what to discard. Feature extraction becomes much more 

effective when all variable information is available, and feature tracking is much more reliable when 

temporal fidelity is high. Features can provide far more information to an analyst and can require far less 

storage than the original volume. Because these techniques must be integrated into the application and 

supported by the run-time environment, interaction with designers of programming models and system 

software for advanced architectures is warranted. 

3.3.3 Data Access 

In situ processing can mitigate the disparity between data generation rates and storage system capabilities 

and is an important component in managing petascale and exascale datasets. However, applications on 

upcoming systems will store an unprecedented amount of simulation data during their run time. The 

current practice of postprocessing datasets from leadership-computing applications on separate 

visualization clusters will likely fall short at the petascale and certainly will be impossible at the exascale. 

Research in alternative mechanisms for processing large datasets is critical for enabling visualization at 

these scales. These could include out-of-core mechanisms and streaming models of processing, likely 

used in conjunction with in situ processing. 

 

Data models and formats are an important issue for applications as a whole, because the decisions made 

when defining these models and formats affect the scientists’ ability to describe the results of their work 

as well as the efficiency with which that data is moved to storage and subsequently processed. The 

explosion of data formats and models present in the DOE application space is causing significant 

problems in our ability to generalize tools for visualization and analysis, and this situation is exacerbated 

by the use of multiple formats and models in applications that combine simulation with other data sources 

or that leverage coupled codes. The disconnect between the data models used in simulation codes and 

subsequent postprocessing access patterns, in conjunction with an increase in the complexity of these 

datasets, is leading to increased overhead in the I/O component of the visualization and analysis process. 

Attention is needed to ensure that storage organizations are optimal for state-of-the-art visualization 

algorithms and map well to the systems on which this data will be processed. Achieving this objective 

will require the combined effort of scientists, visualization experts, and storage researchers. 

 

Mechanisms for reducing data within the storage system provide another avenue for reducing the I/O 

requirements of analysis. Active storage technologies, under research in the storage domain, could be an 

important enabler by allowing analysis primitives to execute within the storage system. In cases where 

scientists prefer to locally view results of remote simulations, minimizing the amount of data that must be 

transferred is critical. Additional research is necessary to understand how best to integrate data reduction 

into remote I/O protocols so that reduction can be performed prior to movement of datasets over long-

haul networks. 

3.3.4 Distance Visualization 

For DOE Office of Science application teams, visualizing, analyzing, and understanding their results is 

key to effective science. These activities are significantly hampered by the fact that scientists and the 

supercomputing resources they work on are located in geographically different locations. These teams are 

expecting to generate petabytes of data soon and exabytes of data in the near future, making this problem 

increasingly challenging. To address this challenge, we need to look beyond application and adaptation of 

existing technologies. Many orders of magnitude separate the data sizes we need to visualize and the data 

sizes our current gigabit networks can handle. 
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A diverse and broad set of interrelated research and development activities is needed to address specific 

distance visualization challenges. These include development of latency-tolerant techniques for delivering 

interactive visualization results to remote consumers using distributed and parallel computational 

platforms; techniques for delivering visualization results that gracefully accommodate the wide variance 

in network capacity, from multiple OC-192 rings (ESnet) to consumer-grade broadband; resource- and 

condition-adaptive partitioning of the visualization pipeline to meet performance or capability targets; and 

data storage and transmission techniques that leverage advances in compression, progressive refinement, 

subsetting, and feature-based methods to help reduce the I/O bandwidth requirements to a level more 

appropriate for distance-based visualization. 

3.3.5 End-to-End Integration 

In order to analyze and understand scientific data, complex computational processes need to be assembled 

and insightful visualizations need to be generated, often requiring the combination of loosely coupled 

computational and data resources, specialized libraries, and Grid and Web services. Typically this process 

involves data management and statistical analysis tasks, such as data extraction from very large datasets, 

data transformation or transposition, statistical summarization, pattern discovery, and analytical 

reasoning. Rather than attempting to develop a single, monolithic system with such a wide range of 

capabilities, technologies and tools from different domains must be integrated in a single framework to 

provide iterative capabilities of interacting with and visualizing scientific data. 

 

Multiple visualization and data analysis libraries and tools are available today, some of which (e.g., VTK, 

VisIt, ParaView, and SCIRun) are capable of processing very large data volumes in parallel, and some 

(e.g., VisTrails) have advanced provenance, comparative and multiview capabilities. Statistical and 

plotting tools (e.g., R, matplotlib, and IDL) are used routinely by scientists. Integrated environments (e.g., 

Matlab and Mathematica) are also very popular. For data management, various tools (e.g., such as 

NetCDF and HDF5) support specialized data formats, and others (e.g., FastBit) support specialized 

indexing methods for efficiently performing value-based queries and subset extraction. The lack of 

integration among these tools is a major shortcoming, however, and hampers visualization and data 

analysis efforts. 

 

A framework is needed that allows multiple tools to interact, permitting the integration of existing and 

future software modules into end-to-end tasks. Research is needed to have visualization, data 

management, statistical, and reasoning tools interoperate seamlessly. Further work is needed to develop 

specialized workflow capabilities for visualization and data analysis. The development of these tools is 

especially challenging when dealing with expected peta- and exascale datasets and multiple scientific 

domains. 
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3.4 Knowledge-Enabling Visualization and Analysis 

The goal of visualization in science is to support generation of new scientific knowledge. Current 

visualization systems, however, address knowledge implicitly rather than explicitly. That is, they are not 

formally integrated with methods and tools that enable capture of knowledge, representation of the 

knowledge and its provenance, or management and reuse of knowledge gained in support of subsequent 

visual exploration and discovery. Capturing knowledge as it is generated is important to assessing that 

knowledge and determining its applicability. Capturing provenance allows the process of reasoning to be 

reconstructed, in turn enabling other users to evaluate the utility and trustworthiness of knowledge 

representations. As we develop new methodologies for capturing knowledge about the discovery process, 

that knowledge can be shared and reused by collaborators or even broader communities, providing 

increased capability in the area of reproducible scientific results that others can validate and verify. 

 

Findings: Analysis is about interaction among people working with each other and computational 

resources to understand results. Little about this process is currently captured for reuse except for 

anecdotal summaries and final snapshots in the form of images and movies. New capabilities will be 

required to enable discovery at the exascale, including the ability to reconstruct previous analyses for 

reuse, leverage previously acquired and related knowledge, and provide guidance and discovery aids to 

the scientist. 

 

Suggested Action: Basic research is needed to develop novel methods for capturing knowledge about the 

analysis process and providing that knowledge for reuse in collaboration and interaction with other team 

members and computational resources. 

3.4.1 Interaction, Usability, and 
Engineering Knowledge 
Discovery 

Even as simulation datasets have been growing 

at an exponential rate, the capabilities of the 

natural human visual system have remained 

unchanged. Furthermore, the bandwidth into 

the human cognitive machinery remains 

constant. As a result, we have now reached a 

stage where the petascale and exascale datasets 

critical to the DOE ASCR mission can easily 

overwhelm the limits of human comprehension. 

Over the past 30 years, computerized 

techniques for visualizing information have 

concentrated on incrementally improving techniques for the graphical display of data. While these 

improvements have extended the field of visualization, they have concentrated on only a small part of the 

problem that scientists and engineers face. To enable the creation of a visual analysis, reasoning, and 

discovery environment targeted at peta- and exascale datasets, we need research to develop a better 

scientist-computer interface— the nexus of cognitive science, effective visual presentation of information 

and data, usability analysis and optimization, methodologies for exploring and interacting with large and 

complex, hierarchical, multimodal, and possibly incomplete and conflicting data. 

 

Advances in the area of the scientist-computer interface will have a profound, positive impact on our 

ability to gain knowledge and understanding from data of increasing size and complexity and on our 

ability to perform hypothesis testing and knowledge discovery in peta- and exascale data, and will 

fundamentally change our understanding about how humans perceive and gain knowledge from large, 

 
 
Human cognitive capacity remains flat while our ability to 

collect and generate data continues to grow at an 

exponential rate. (Image courtesy Jeffrey Heer, PARC 

User Interface Research Group.) 
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complex data. Research directions in this area include formal usability studies and analysis across diverse 

domains such as code, data, and graphics interfaces; alternative display technologies; quantitative analysis 

and optimization of workflow; mappings from data to visual representations; and inclusion of cognitive 

principles into the visualization and data analysis tools. 

 

One approach to improving interaction could be through a common interface across multiple tools. 

Ideally, this new technology would result in reusable user interfaces that enable intuitive and interactive 

exploration and discovery—for example: interoperable user-interface libraries that contain widgets having 

a common look and feel that are specifically intended for large-scale data exploration yet usable by 

multiple applications. One design objective is interfaces that capture the best interaction methods to 

support data reduction, feature extraction, querying, and selection. These interfaces should also support 

synchronous collaborative interaction between multiple users who may be separated by great distances.  

3.4.2 Collaboration 

Today’s scientific research is inherently 

distributed, with science teams often 

consisting of researchers at universities and 

national laboratories around the country or 

around the globe. A new generation of 

visualization and data exploration tools are 

needed to significantly enhance interaction 

between these distributed scientists, their 

data, and their computational environments.  

 

Also needed is a collaboration infrastructure 

that supports both asynchronous and 

synchronous collaboration. Asynchronous 

collaboration infrastructure might include 

large-scale equivalents of wikis, blogs, 

mashups, and other emerging social 

networking tools. Synchronous collaboration 

infrastructure might include context- and 

location-aware, persistent visualization and 

collaboration environments. These 

environments should seamlessly display 

information from both local and remote 

sources, while simultaneously providing an 

environment that fully exploits local 

capabilities without lowering the experience 

to the lowest common denominator.  

 

It is also necessary to deal concurrently with both distributed human-human and distributed human-

computer interactions. The ideal would thus be environments allowing remote and local participants alike 

to effectively participate in real-time computation, visualization, and data exploration. Unfortunately, 

little infrastructure is currently available to enable graphics and visualization developers to build tools 

with such collaborative capabilities. A clear need exists for both “building blocks” to allow these 

developers to create effective, interoperable, collaboration tools. And the tools themselves are central to 

the scientific enterprise, enabling distributed teams to make the discoveries of the future. 

Faculty, researchers, and students in their weekly research 

progress meetings in front of the 100 Megapixel 

LambdaVision display at the Electronic Visualization 

Laboratory (University of Illinois at Chicago). Using EVL’s 

Scalable Adaptive Graphics Environment (SAGE) 

middleware, a variety of high-resolution information are 

juxtaposed on the walls to enable group discussion. 

Participants can be in the room and or communicating over 

distance mediated via high-definition video conferencing. 
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3.4.3 Quantitative Metrics for Parameter Choices 

The fundamental process of visualization involves choices of parameters for queries of different types. 

Examples are the selection of spatial and temporal scales, transfer functions, and lighting and camera 

parameters. To glean insight into a scientific dataset, the user often needs to go through a lengthy, 

sometimes prohibitively expensive, process to obtain a large ensemble of visualization results. 

Quantitative feedback about the choice of visualization parameters is crucial for streamlining visual 

analysis. Techniques are needed to help scientists quickly narrow down the immense parameter search 

space, identify salient features, and decide the right level of detail in the data to perform further 

investigation. Also needed are metrics to help users understand the tradeoff between the computational 

cost and the information gain, and the completeness of the visualization results. The users need to be 

informed not only about what they have seen but also about what they have not yet seen. 

4 Supporting a Basic Research Program 

Investment in long-term basic research in visualization and knowledge discovery is crucial to ensuring the 

advancement of science required to meet future national needs. In addition, a successful basic research 

program must be complemented with adequate infrastructural support and a comprehensive education 

program. 

4.1 Infrastructure for Successful Research 

Scientific research programs are necessarily supported by the unheralded but vital resources that form the 

computing infrastructure. Frequently it is infrastructure—whether hardware, software, or data—that 

enables researchers to create breakthroughs in the sciences. For example, only after the telescope was 

refined by Dutch craftsmen was Galileo able to discover the moons orbiting Jupiter. Such circumstances 

are not atypical; often, advances in basic infrastructure free scientists to take the next step forward in their 

particular field of study. Thus, both infrastructure and research must be funded at appropriate levels to 

ensure that technology innovation continues. 

 

The computational sciences presuppose that an adequate computing environment exists to support the 

envisioned numerical simulations and experiments at a scale appropriate to the data sizes anticipated. 

While this is certainly a necessary condition, many other facilities can significantly benefit the stability, 

flexibility, and efficiency of the scientific research process. For example, using standard datasets to 

compare and contrast the efficacy of algorithms from competing research groups enables useful 

comparisons. Further, collaborative research projects are the norm as systems become more complex. In 

addition to sharing data, therefore, infrastructure that supports the development of tools across multiple 

organizations is mandatory. Another important consideration is to ensure that new technologies are 

rapidly transitioned to those organizations that can benefit from them, or even form the basis of new 

business opportunities to benefit the U.S. economy. 

 

The following topics are seen as critical to a successful R&D program in visualization and knowledge 

discovery: 

• Collaborative software process. Research teams are becoming distributed and larger. Thus, software 

processes that support distributed collaboration are essential. Furthermore, such processes must 

facilitate the development of stable systems that are thoroughly tested and managed.  

• Data repositories. Visualization and analysis researchers typically are starved for example datasets. 

Often simplistic data is used to initially develop computational techniques; however, in many cases 

this data is not representative of the targeted applications. Thus the computational community must be 

encouraged to gather, distribute, and manage representative datasets to help enable creation of 

effective computational methods. 

• Toolkits and reusable components. Many researchers use standard toolkits and applications on 

which to base their research. These have the benefit of accelerating research because such 
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foundational elements do not have to be recreated, and researchers can focus on the particular 

problem at hand. Creation of standard toolkits should be encouraged within the community to help 

continue this tradition. 

• Open science. The practice of science requires the ability to recreate the results of experiments. It 

also implies full disclosure as to the methods and data used to generate the results of an experiment. 

In the computational sciences this means access to data, source code, and publications. It is 

imperative that the practice of open science be employed to ensure the full benefit of scientific 

funding. 

4.2 Fostering Education 

A strong research program cannot be established without a complementary education component, which 

is as important as adequate infrastructure support. A continuing supply of first-quality computational 

scientists available for work at DOE laboratories is critical. For example, the DOE Computational Science 

Graduate Fellowship (CSGF) program has successfully provided support and guidance to some of the 

nation’s best scientific graduate students, and many of these students are now employed in DOE 

laboratories, private industry, and educational institutions. However, in order to meet the DOE Office of 

Science's Advanced Scientific Computing mission, there is also a significant need for a similar program 

supporting training in large-scale visual data analysis. The DOE High-Performance Computer Science 

Fellowship formed by Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and 

Sandia National Laboratories to foster long-range computer science research efforts in support of the 

challenges of high-performance computing was a step in right direction. Unfortunately, these fellowships 

have been discontinued. A DOE Graduate Fellowship in High-Performance Computer Science is needed 

that trains people in large-scale visual data analysis, as well as in scientific data management and high-

performance software and hardware. In addition, a successful education program should include the 

following: 

• Undergraduate research experience (REU). The goal is to involve undergraduate students in 

visualization and data analysis research during their sophomore and senior years. REU supplements 

should be provided to ongoing DOE-funded research projects. In order to further improve the quality 

of emerging visualization scientists, these undergraduate students should be encouraged to apply for 

DOE graduate fellowships.  

• Postdoctoral research fellowships. The need for visualization scientists in DOE laboratories is 

expected to increase rapidly. Postdoctoral research fellowships can help attract more fresh Ph.D.’s 

into the field of visualization in support of DOE missions. These fellowships would expose the 

postdoctoral fellows to the most challenging research problems and advanced computational facilities 

and would provide a comfortable transition into faculty or DOE scientist positions. The DOE Early 

Career Principal Investigator Program is a great first step in this direction but covers only a limited 

number of individuals. 

• Workshops and tutorials. The diversity of visualization research makes it difficult for a single 

institution to offer comprehensive training to its students. Furthermore, most academic institutions do 

not have a balanced visualization curriculum. With adequate funding support, leading researchers and 

institutions in visualization can help others develop their education program through workshops and 

tutorials. Also, workshops and tutorials offered regularly at major conferences in other scientific 

disciplines can help educate application scientists about the latest visualization technologies.  

• Data repositories and benchmarks. The education program should include the creation of data 

repositories and benchmarks. The ultimate goal is to create a multi-institutional effort with a coherent 

intellectual theme and shared education resources, tightly coupled with research activities at DOE 

laboratories. 
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4.3 Integrating Basic Research Programs 

For maximum effect, a research program in visual analysis and knowledge discovery should be well-

integrated into the broader Office of Science portfolio, into other U.S. research programs, and into 

research programs in this field around the world. To this end, we envision three complementary strategies. 

 

Interagency collaborations. A number of government agencies support research programs in 

visualization and data exploration. For example, the Department of Homeland Security (DHS), with its 

National and Regional Visualization and Analytics Centers (NVACs and RVACs), focuses on mission-

critical issues of homeland security addressed by information visualization technology. In addition, data 

exploration and visualization programs are supported by the National Institutes of Health (NIH), 

Department of Defense, and DARPA. Moreover, the National Science Foundation has for many years 

funded a number of individual research projects in computer graphics, along with larger-scale 

graphics/visualization research efforts in the Partnerships for Advanced Computational Infrastructure 

(PACI) program. In addition, several programs are being launched in computer graphics, visualization, 

and data exploration. The first of these is a program in the basic science of visual analysis, as described in 

“Illuminating the Path: The Research and Development Agenda for Visual Analytics.” The second is a 

visualization and data exploration component being added to the Cyberinfrastructure program; this will 

include telecollaboration and remote visualization and remote data exploration. The third is a new 

program called Cyber-enabled Discovery and Innovation (CDI), planned to encompass five thrusts all 

involving visual data exploration: knowledge extraction, complex interactions, computational 

experimentation, virtual environments, and education. 

 

While DOE has a unique mission and its laboratories provide an essential national resource, DOE’s 

research agenda in data exploration and visualization overlaps with those of these and other agencies. 

Through shared research investment, the DOE can stretch scarce resources and exploit potential 

synergies. 

 

International partnerships and collaboration. Through the formation of international partnerships, 

DOE can leverage advances occurring in other countries and can better participate in the global advance 

of science. As an example, several countries are starting programs in visualization and data analysis, 

including Australia, New Zealand, Canada, and several countries within the European Union (EU); and 

there is a growing interest within the Asian community. Also, the EU countries have surged ahead of the 

United States in “collaboratories”; this is an area ripe for international partnerships. 

 

Centers of excellence in infrastructure and education. The breath, depth, complexity, and richness of 

modern scientific investigations can no longer be accomplished within a single discipline or institution. 

The DOE SciDAC II program supports two visualization projects with potentially broad impacts on DOE 

research: the Visualization and Analysis Center for Enabling Technologies (VACET) and the Institute for 

Ultrascale Visualization. VACET focuses on research, development, and deployment of production-

quality petascale-capable visualization analysis technology for SciDAC computational sciences at DOE’s 

open computing facilities. The Ultravis Institute plays a leading role in peta- and exascale visual data 

understanding by combining basic research with intense collaborations with science teams and by 

reaching out to the visualization and science communities to teach them about these new techniques. 

Centers such as these play an important role in educating the next generation of visual analysts. Educating 

the next generation is key to a vibrant, successful community. 
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5 Conclusions 

Visual analysis and knowledge discovery is an indispensable cornerstone of the contemporary scientific 

discovery process. One of the main messages of this report is that without long-term investment in visual 

analysis and knowledge discovery research, existing and future scientific investments face a serious risk: 

there is an alarming divergence in the trajectories of the flood of scientific data computed by simulations 

and collected by experiments and our ability to gain understanding from such data.  

 

Basic research in visual analysis and knowledge discovery is critical in order to remedy this situation. We 

consider work in the following technical areas to be of the highest priority: 

• Interaction and Collaboration – A new generation of visualization and data exploration tools are 

needed to significantly enhance interaction and collaboration between these distributed scientists, 

their data, and their computational environments. 

• Pervasive Parallelism and Multiscale Analysis – New developments in computer architecture will 

enable the development of visualization applications that are parallel at multiple levels. This 

capability must be provided to ensure that scientists are able to maximize time analyzing data. 

• Feature Detection and Tracking – New algorithms will allow the detection and tracking of features 

that are of interest to the scientist, aiding in the discovery of important regions to investigate further. 

• Multifield and Multimodel Data Understanding – New approaches will enable comparison and 

combined analysis of multi-variable data that is becoming increasingly common in extreme scale 

datasets. 

• Distance Visualization – Because computational resources, data, and scientists are rarely collocated, 

new visualization and analysis pipeline architectures must accommodate distance visualization at the 

extreme scale and remote users with a diverse set of display and processing capabilities. 

• In Situ Processing – In order to maximize the effectiveness of large computational resources, new 

visualization efforts will collocate certain visualization algorithms with simulation.  

• Time-Varying Datasets - New visualization techniques and user interfaces must be developed to 

assist the user in understanding extreme scale, time-varying, multivariate datasets. Scientists must be 

able to interactively browse through different spatial and temporal scales, identify scientific 

phenomena of different temporal length, and track salient features in both time and space.  

• Visual Analysis, Quantification, and Representation of Uncertainty and Error – New approaches 

must be developed to quantify the uncertainty and error in the analysis process and present scientists 

with immediate feedback as they choose different forms of visual analysis. 

• End-to-End Integration – End-to-end integration strategies, considering the entire 

simulation/analysis process as an analog to a physical experiment, allow scientists to more easily 

document and track the entire scientific process.  

 

Further, we envision several key attributes of a successful visual data analysis research program. It must 

be sufficiently well-funded over an adequate duration of time to allow research results to be conceived, 

germinate, and reach fruition. The funding profile needs to be commensurate with the time horizon for 

research so that staff may be attracted and retained for the duration of the project. The research program 

needs to be complemented by an education program for the creation of a new generation of visualization 

and analysis researchers. The research program can not exist in isolation, but rather must be part of a 

larger portfolio of research, development, and deployment activities that have coordination and 

interaction across programs and, where feasible, other agencies. Such coordination and interaction reduce 

duplication of effort and help new technological advances make their way into the hands of scientists. The 

program needs to facilitate a reward structure that accommodates and encourages high-risk projects that 

may not have payoff for a long period of time. Successful basic research efforts, which target potentially 

high-risk, high-reward areas having a relatively long time horizon (5–15 years), will be the source of the 

major technological advances required to meet future data understanding challenges. 
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Appendix A: Summary of Basic Research Program Focus Areas 

 

Mathematical Foundations 

• Robust Topological Methods. Provides mathematically-based capability for identifying and 

quantifying phenomena in multi-resolution, temporally varying, large and complex scientific data to 

aid in accelerating knowledge discovery.  

• High Order Tensor Analysis. Provides visual analysis capability responsive to the increasingly 

complex, multivariate data emerging from many science projects.  

• Statistical Analysis. Helps bridge the gap between visual and traditional analysis in the extreme scale 

regime by focusing attention on global characteristics rather than those of individual data points.  

• Feature Detection and Tracking. Focuses visual and traditional analysis processing at the extreme 

scale on subsets of data deemed to be scientifically “interesting” for a given line of hypothesis testing.  

• Uncertainty Management and Mitigation. Helps scientists better understand and analyze 

uncertainty, which is present in some form in all scientific data.  

 

Data Fusion 

• Multimodel Data Understanding. Ability to perform visual data analysis for science projects that 

use multiple codes (tightly or loosely) coupled to model complex, multiregime phenomena.  

• Multifield and Multiscale Analysis. Comparative visual analysis and data exploration at multiple 

resolutions on high-resolution, complex data offers a powerful capability for enabling extreme scale 

knowledge discovery.  

• Time-Varying Datasets. Fundamental visualization, analysis, and data access capabilities in 

response to simulations producing more data in the temporal domain and the corresponding need for 

temporal analysis/access.  

 

Advanced Architectures and Systems 

• In Situ Processing. Integration of visual data analysis processing with the simulation code itself, 

enabling leverage of large computational resources for visual data analysis as well as potentially 

avoid extreme scale data I/O and management problems.  

• Data Access. Data models, formats, and high-performance access patterns occupy a central role in all 

visual data analysis endeavors.  

• Distance Visualization. Technologies that help geographically-distributed teams of researchers 

visualize and understand their remotely-located scientific results. 

• End-to-End Integration. Design patterns and engineering practices that simplify combining 

disparate technologies from many different research and development teams—visualization, statistics, 

data management, analysis, and so forth—into vertical applications.  

 

Knowledge-Enabling Visualization and Analysis  

• Scientist-Computer Interface. Increases scientific knowledge discovery through a combination of 

optimizing the interfaces between data, software algorithms, visual presentation, and users, as well as 

evolution in fundamental visual presentations of large, complex, and abstract data characteristic of 

contemporary science.  

• Collaboration. Provides infrastructure enabling distributed teams of scientific researchers to engage 

in multi-participant, interactive knowledge discovery.  

• Quantitative Metrics for Parameter Choices. Accelerates time to discovery by simplifying use of 

complex visual data analysis tools. 
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