Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Large scale visualization on the Powerwall.
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Events on October 2, 2019

Visualization Seminar

Pavol Klacansky Presents:

Toward Localized Topological Data Structures: Querying the Forest for the Tree

October 2, 2019 at 12:00pm for 30min
Evans Conference Room, WEB 3780
Warnock Engineering Building, 3rd floor.

Abstract:

Topological approaches for data analysis can answer complex questions about the number, connectivity, and scale of intrinsic features in scalar data. However, the global nature of many topological structures makes their computation challenging at scale, and thus often limits the size of data that can be processed. One key quality to achieving scalability and performance on modern architectures is data locality, i.e., a process operates on data that resides in a nearby memory system, avoiding frequent jumps in data access patterns. From this perspective, topological computations are particularly challenging because the implied data structures represent features that can span the entire data set, often requiring a global traversal phase that limits their scalability. Traditionally, expensive preprocessing is considered an acceptable trade-off as it accelerates all subsequent queries. Most published use cases, however, explore only a fraction of all possible queries, most often those returning small, local features. In these cases, much of the global information is not utilized, yet computing it dominates the overall response time. We address this challenge for merge trees, one of the most commonly used topological structures. In particular, we propose an alternative representation, the merge forest, a collection of local trees corresponding to regions in a domain decomposition. Local trees are connected by a bridge set that allows us to recover any necessary global information at query time. The resulting system couples (i) a preprocessing that scales linearly in practice with (ii) fast runtime queries that provide the same functionality as traditional queries of a global merge tree. We test the scalability of our approach on a shared-memory parallel computer and demonstrate how data structure locality enables the analysis of large data with an order of magnitude performance improvement over the status quo. Furthermore, a merge forest reduces the memory overhead compared to a global merge tree and enables the processing of data sets that are an order of magnitude larger than possible with previous algorithms.

Posted by: Steve Petruzza

Visualization Seminar

Lin Yan Presents:

A Structural Average of Labeled Merge Trees for Uncertainty Visualization

October 2, 2019 at 12:30pm for 30min
Evans Conference Room, WEB 3780
Warnock Engineering Building, 3rd floor.

Abstract:

Physical phenomena in science and engineering are frequently modeled using scalar fields. In scalar field topology, graph-based topological descriptors such as merge trees, contour trees, and Reeb graphs are commonly used to characterize topological changes in the (sub)level sets of scalar fields. One of the biggest challenges and opportunities to advance topology-based visualization is to understand and incorporate uncertainty into such topological descriptors to effectively reason about their underlying data. In this paper, we study a structural average of a set of labeled merge trees and use it to encode uncertainty in data. Specifically, we compute a 1-center tree that minimizes its maximum distance to any other tree in the set under a well-defined metric called the interleaving distance. We provide heuristic strategies that compute structural averages of merge trees whose labels do not fully agree. We further provide an interactive visualization system that resembles a numerical calculator that takes as input a set of merge trees and outputs a tree as their structural average. We also highlight structural similarities between the input and the average and incorporate uncertainty information for visual exploration. We develop a novel measure of uncertainty, referred to as consistency, via a metric-space view of the input trees. Finally, we demonstrate an application of our framework through merge trees that arise from ensembles of scalar fields. Our work is the first to employ interleaving distances and consistency to study a global, mathematically rigorous, structural average of merge trees in the context of uncertainty visualization.

Posted by: Steve Petruzza