Fast Agglomerative Clustering for Rendering

Bruce Walter, Kavita Bala,
Cornell University
Milind Kulkarni, Keshav Pingali
University of Texas, Austin
Clustering Tree

- Hierarchical data representation
 - Each node represents all elements in its subtree
 - Enables fast queries on large data
 - Tree quality = average query cost

- Examples
 - Bounding Volume Hierarchy (BVH) for ray casting
 - Light tree for Lightcuts
Tree Building Strategies

- **Agglomerative (bottom-up)**
 - Start with leaves and aggregate

- **Divisive (top-down)**
 - Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide
Tree Building Strategies

- **Agglomerative (bottom-up)**
 - Start with leaves and aggregate

- **Divisive (top-down)**
 - Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

- **Agglomerative (bottom-up)**
 - Start with leaves and aggregate

- **Divisive (top-down)**
 - Start root and subdivide
Conventional Wisdom

• Agglomerative (bottom-up)
 – Best quality and most flexible
 – Slow to build - $O(N^2)$ or worse?

• Divisive (top-down)
 – Good quality
 – Fast to build
Goal: Evaluate Agglomerative

- Is the build time prohibitively slow?
 - No, can be almost as fast as divisive
 - Much better than $O(N^2)$ using two new algorithms

- Is the tree quality superior to divisive?
 - Often yes, equal to 35% better in our tests
Related Work

• Agglomerative clustering
 – Used in many different fields including data mining, compression, and bioinformatics [eg, Olson 95, Guha et al. 95, Eisen et al. 98, Jain et al. 99, Berkhin 02]

• Bounding Volume Hierarchies (BVH)
 – [eg, Goldsmith and Salmon 87, Wald et al. 07]

• Lightcuts
 – [eg, Walter et al. 05, Walter et al. 06, Miksik 07, Akerlund et al. 07, Herzog et al. 08]
Overview

• How to implement agglomerative clustering
 – Naive $O(N^3)$ algorithm
 – Heap-based algorithm
 – Locally-ordered algorithm

• Evaluating agglomerative clustering
 – Bounding volume hierarchies
 – Lightcuts

• Conclusion
Agglomerative Basics

• Inputs
 – N elements
 – Dissimilarity function, \(d(A,B) \)

• Definitions
 – A cluster is a set of elements
 – Active cluster is one that is not yet part of a larger cluster

• Greedy Algorithm
 – Combine two most similar active clusters and repeat
Dissimilarity Function

• \(d(A,B) \): pairs of clusters \(\rightarrow \) real number
 – Measures “cost” of combining two clusters
 – Assumed symmetric but otherwise arbitrary
 – Simple examples:
 • Maximum distance between elements in \(A+B \)
 • Volume of convex hull of \(A+B \)
 • Distance between centroids of \(A \) and \(B \)
Naive $O(N^3)$ Algorithm

Repeat {
 Evaluate all possible active cluster pairs $<A,B>$
 Select one with smallest $d(A,B)$ value
 Create new cluster $C = A+B$
}

} until only one active cluster left

• Simple to write but very inefficient!
Naive $O(N^3)$ Algorithm Example
Acceleration Structures

- **KD-Tree**
 - Finds best match for a cluster in sub-linear time
 - Is itself a cluster tree

- **Heap**
 - Stores best match for each cluster
 - Enables reuse of partial results across iterations
 - Lazily updated for better performance
Heap-based Algorithm

Initialize KD-Tree with elements
Initialize heap with best match for each element
Repeat {
 Remove best pair <A,B> from heap
 If A and B are active clusters {
 Create new cluster C = A+B
 Update KD-Tree, removing A and B and inserting C
 Use KD-Tree to find best match for C and insert into heap
 } else if A is active cluster {
 Use KD-Tree to find best match for A and insert into heap
 }
} until only one active cluster left
Heap-based Algorithm Example

U

PQ

T

S

R
Heap-based Algorithm Example

- T
- U
- PQ
- RS
Locally-ordered Insight

- Can build the exactly same tree in different order

```
  3
 / \
1  2
P   Q R   S
```

```
  3
 / \
2  1
P   Q R   S
```

- How can we use this insight?
 - If $d(A,B)$ is non-decreasing, meaning $d(A,B) \leq d(A,B+C)$
 - And A and B are each others best match
 - Greedy algorithm must cluster A and B eventually
 - So cluster them together immediately
Locally-ordered Algorithm

Initialize KD-Tree with elements
Select an element A and find its best match B using KD-Tree
Repeat {
 Let C = best match for B using KD-Tree
 If d(A,B) == d(B,C) { //usually means A==C
 Create new cluster D = A+B
 Update KD-Tree, removing A and B and inserting D
 Let A = D and B = best match for D using KD-Tree
 } else {
 Let A = B and B = C
 }
} until only one active cluster left
Locally-ordered Algorithm Example
Locally-ordered Algorithm Example
Locally-ordered Algorithm Example

- U
- T
- S
- R
- Q
- P
Locally-ordered Algorithm Example

T

S

R

U

Q

P
Locally-ordered Algorithm Example
Locally-ordered Algorithm Example

U

T

P

Q

RS
Locally-ordered Algorithm Example

T → U
U → Q
Q → P
P → RS
Locally-ordered Algorithm Example
Locally-ordered Algorithm Example
Locally-ordered Algorithm Example
Locally-ordered Algorithm

• Roughly 2x faster than heap-based algorithm
 – Eliminates heap
 – Better memory locality
 – Easier to parallelize
 – But d(A,B) must be non-decreasing
Results: BVH

- BVH – Binary tree of axis-aligned bounding boxes
- Divisive [from Wald 07]
 - Evaluate 16 candidate splits along longest axis per step
 - Surface area heuristic used to select best one
- Agglomerative
 - $d(A,B) =$ surface area of bounding box of $A+B$

- Used Java 1.6 JVM on 3GHz Core2 with 4 cores
 - No SIMD optimizations, packets tracing, etc.
Results: BVH

BVH Build Times

- Agg-Heap
- Agg-Local
- Divisive

Time (secs)

Triangles

0 500000 1000000 1500000 2000000 2500000

Kitchen Tableau GCT Temple
Results: BVH

Expected Random Line Cost

Surface area heuristic with triangle cost = 1 and box cost = 0.5
Results: BVH

Image Time (secs)

- **Kitchen**: Divisive 49.2, Agglomerative 32.3
- **Tableau**: Divisive 16.4, Agglomerative 15.8
- **GCT**: Divisive 35.1, Agglomerative 29
- **Temple**: Divisive 41.2, Agglomerative 32.2

1280x960 Image with 16 eye and 16 shadow rays per pixel, without build time
Lightcuts Key Concepts

- **Unified representation**
 - Convert all lights to points
 - ~200,000 in examples

- **Build light tree**
 - Originally agglomerative

- **Adaptive cut**
 - Partitions lights into clusters
 - Cutsize = # nodes on cut
Lightcuts

• Divisive
 – Split middle of largest axis
 – Two versions
 • 3D – considers spatial position only
 • 6D – considers position and direction

• Agglomerative
 – New dissimilarity function, $d(A,B)$
 • Considers position, direction, and intensity
Results: Lightcuts

640x480 image with 16x antialiasing and ~200,000 point lights
Results: Lightcuts

Total Image Time (secs)

- Divisive-3D
- Divisive-6D
- Agglomerative

640x480 image with 16x antialiasing and ~200,000 point lights
Results: Lightcuts

Lightcuts Build Times

- Agg-Heap
- Agg-Local
- Divisive
- $O(N)$
- $O(N^2)$

Kitchen model with varying numbers of indirect lights
Conclusions

• Agglomerative clustering is a viable alternative
 – Two novel fast construction algorithms
 • Heap-based algorithm
 • Locally-ordered algorithm
 – Tree quality is often superior to divisive
 – Dissimilarity function d(A,B) is very flexible

• Future work
 – Find more applications that can leverage this flexibility
Acknowledgements

• Modelers
 – Jeremiah Fairbanks, Moreno Piccolotto, Veronica Sundstedt & Bristol Graphics Group,

• Support
 – NSF, IBM, Intel, Microsoft