Accelerated Building and Rendering of Restricted BSP Trees

Brian Budge Daniel Coming Derek Norpchen Ken Joy

Institute for Data Analysis and Visualization
UC Davis

Center for Advanced Visualization, Computation and Modeling
Desert Research Institute
Overview

- What is a Restricted BSP tree (RBSP)?
 - And what is the relation to k-DOPs?
- General Build Strategy for RBSP
- k-DOP details
 - k-DOP representation
 - Surface area calculations
- Ray tracing of RBSPs
Prior Work

- Lots of ray tracing acceleration work
- Havran's thesis [Havran 2000]
- Popular structures recently
 - kd-tree (example, [Wald 2006])
 - BVH (example, [Wald 2007])
- RBSP
 - Kammaje and Mora [Kammaje 2007]
Why restricted BSP trees?

- *kd*-trees are so great, why not generalize?
- BSP trees can bound geometry better
- BSP trees require more work for traversal
- Not clear to us how to build good BSP tree
- RBSP: cross between *kd*-trees and BSP
What is an RBSP?

kd-tree splits axis-aligned bounding boxes (AABB)

RBSP splits k-DOPs
What is a k-DOP?

- Convex polytope
- Defined by constrained set of M directions
 - $k = 2M$
- AABB = 6-DOP with directions x, y, z
- Can describe k-DOP with set of M directions and set of M intervals
Edge Soup

• Simplest explicit \(k \)-DOP form

```c
struct edge {
    line_segment seg;
    int faceID[2]; // Just ID's, faces not stored anywhere
};
```

• Compact and efficient
k-DOPs we used

- **Standard k-DOPs [Klosowski 1998]**
 - Features of cube to generate 3, 7, and 13
 - We extended by cube feature subdiv for 25 and 49 directions ($k=50, 98$)
- **Golden Ratio directions**
 - Point locations generated on sphere in a spiral
 - Generates decent point distribution
 - What Kammaje and Mora used
RBSP build overview

• Build strategy similar to \textit{kd-tree}
 – Binary space partitioning via split planes
 – Greedy
 – Recursive

• M split plane directions instead of 3
RBSP build overview

```java
buildTreeNode(kDOP, objects) {
    if(terminate(kDOP, objects)) {
        setObjects(objects);
        return this;
    }
    info = findSplit(kDOP, objects);
    if(!info.goodSplit) {
        setObjects(objects);
        return this;
    }
    split(info, kDOP, kDOP_r, objects, obj_r);
    left = buildTreeNode(kDOP, objects);
    right = buildTreeNode(kDOP_r, obj_r);
    return this;
}
```
buildTreeNode(kDOP, objects) {
 if(terminate(kDOP, objects)) {
 setObjects(objects);
 return this;
 }
 info = findSplit(kDOP, objects);
 if(!info.goodSplit) {
 setObjects(objects);
 return this;
 }
 split(info, kDOP, kDOP_r, objects, obj_r);
 left = buildTreeNode(kDOP, objects);
 right = buildTreeNode(kDOP_r, obj_r);
 return this;
}
Termination of recursion

- Typical criteria
 - Minimal triangle count in the node
 - Maximum tree depth reached
buildTreeNode(kDOP, objects) {
 if(terminate(kDOP, objects)) {
 setObjects(objects);
 return this;
 }
 info = findSplit(kDOP, objects);
 if(!info.goodSplit) {
 setObjects(objects);
 return this;
 }
 split(info, kDOP, kDOP_r, objects, obj_r);
 left = buildTreeNode(kDOP, objects);
 right = buildTreeNode(kDOP_r, obj_r);
 return this;
}
Finding a split plane

• Many different possible heuristics
• Only requirements:
 – The plane is an offset along one of the \(k \)-DOP directions
 – The plane intersects the current \(k \)-DOP
• Following prior work, we use SAH
Finding a split

```cpp
info.cost = c_intersect * len;
info.goodSplit = false;

estimator.init(kDOP);
for(m = 0; m < M; ++m) {
    estimator.setDirection(m);
    /// extract object bounds for direction m
    /// sort the bounds
    // go through and figure out the cost at each potential split
    for(size_t i = 0; i < 2*len; ++i) {
        (saRatioBelow, saRatioAbove) = estimator.areas(edges[i].t);
        costBelow = nBelow * saRatioBelow;
        costAbove = nAbove * saRatioAbove;
        cost = c_traverse + c_intersect*(costBelow + costAbove);
        if(cost < info.cost) {
            info.cost = cost;
            info.dir = m;
            info.split = edget;
            info.goodSplit = true;
        }
    }
}
return info;
```
buildTreeNode(kDOP, objects) {
 if(terminate(kDOP, objects)) {
 setObjects(objects);
 return this;
 }

 info = findSplit(kDOP, objects);
 if(!info.goodSplit) {
 setObjects(objects);
 return this;
 }

 split(info, kDOP, kDOP_r, objects, obj_r);
 left = buildTreeNode(kDOP, objects);
 right = buildTreeNode(kDOP_r, obj_r);
 return this;
}
Splitting the node

- Split the k-DOP into left and right

- Split the objects left, right, or both
 - If both, can do perfect splitting
buildTreeNode(kDOP, objects) {
 if(terminate(kDOP, objects)) {
 setObjects(objects);
 return this;
 }
 info = findSplit(kDOP, objects);
 if(!info.goodSplit) {
 setObjects(objects);
 return this;
 }
 split(info, kDOP, kDOP_r, objects, obj_r);
 left = buildTreeNode(kDOP, objects);
 right = buildTreeNode(kDOP_r, obj_r);
 return this;
}
Splitting Strategy: SAH

- Need surface area ratios for each possible split
- Surface area of k-DOP is not cheap
- Many splits considered
- Strategy: small precomputation yields cheap evaluation per split candidate
Naïve SAH on k-DOPs

- Explicitly split k-DOP with candidate plane
- Compute surface area of result k-DOPs
 - Polygon area
Dynamic Programming
SAH on k-DOPs

- Want parameterized area equations
 - 2nd order polynomials
 - $Area_{\text{left}}(t), Area_{\text{split}}(t)$
- Project/sort k-DOP vertices in splitting direction
 - Each face contributes to coefficients
 - Intervals between vertices use same coefficients
Computing Area Coefficients
Computing Area Coefficients
Computing Area Coefficients
Computing Area Coefficients
Coefficients for $\text{Area}_{left}(t)$

\[
\frac{\delta \text{Area}_i}{\delta t} = 2c_2 t + c_1,
\]

\[
c_r = \frac{1}{r} \cdot \frac{h_j - h_i}{t_j - t_i} \cdot \frac{1}{\sin(\cos^{-1}(F \cdot D))},
\]

Rate of convergence/divergence

Account for angle between face and splitting direction

\[
c_1 = \left(h_i - t_i \frac{h_j - h_i}{t_j - t_i} \right) \cdot \frac{1}{\sin(\cos^{-1}(F \cdot D))}
\]

Signed distance of edges at $t = 0$
Rate of convergence/divergence

\[
\frac{h_j - h_i}{t_j - t_i}
\]

Signed distance of edges at \(t = 0 \)

\[
h_i - t_i \frac{h_j - h_i}{t_j - t_i}
\]
Dynamic Programming

\[\text{Area}_{\text{left}}(t) \]

- Single pass over sorted vertices
- Accumulate coefficients

\[C_2 = \sum_{i=0}^{E} c_{2i}, \quad C_1 = \sum_{i=0}^{E} c_{1i}, \]

- Accumulate partial sums of area completely to left

\[S_{i+1} = C_2(t_{i+1}^2 - t_i^2) + C_1(t_{i+1} - t_i) + S_i \]

\[t_i \leq t < t_{i+1} \]

- Need to compute initial face area \(S_0 \)
Dynamic Programming

\[\text{Area}_{left}(t) \]

- Dimension reduction [Sunday, 2002]:

\[
S_0 = \text{Area}3D = \text{Area}2D \cdot \frac{|D|}{\max(D_x, D_y, D_z)}
\]

\[
\text{Area}2D = \frac{1}{2} \sum_{i=0}^{E} (u_{i+1} + u_i)(v_{i+1} - v_i),
\]

Signed area of the triangles formed by each edge and the origin

\[
u, v \in \{x, y, z\} \mid D_u, D_v \neq \max(D_x, D_y, D_z)\]
Coefficients for $Area_{\text{split}}(t)$

- Parameterize 2D polygon area in splitting direction
- Parameterize vertices of plane-k-DOP intersection along intersected edges
- Only need to know two adjacent vertices at once

\[
Area_{2D_{\text{split}}}(t) = \frac{1}{2} \sum_{i=0}^{E} (u_{i+1}(t) + u_i(t))(v_{i+1}(t) - v_i(t))
\]
Dynamic Programming

\[\text{Area}_{\text{split}}(t) = \frac{1}{2} (K_2 t^2 + K_1 t + K_0), \]

\[\text{Area}_{2D_{\text{split}}}(t) = \frac{1}{2} (K_2 t^2 + K_1 t + K_0), \]

\[K_2 = \sum_{i=0}^{E} k_{2i}, \quad K_1 = \sum_{i=0}^{E} k_{1i}, \quad K_0 = \sum_{i=0}^{E} k_{0i}. \]

\[k_{\gamma i} = (d_{u,i+1} + d_{u,i})(d_{v,i+1} - d_{vi}), \]
\[k_{1i} = (d_{u,i+1} + d_{u,i})(o_{v,i+1} - o_{vi}) \]
\[+ (o_{u,i+1} + o_{u,i})(d_{v,i+1} - d_{vi}), \]
\[k_{0i} = (o_{u,i+1} + o_{u,i})(o_{v,i+1} - o_{vi}). \]
Computing Areas for Splits

- Given split candidate offset
- Find coefficients for interval intersected by candidate
- Compute areas:

\[
\text{Area}_{\text{left}}(t_{\text{split}}) = C_{2i}(t_{\text{split}}^2 - t_i^2) + C_{1i}(t_{\text{split}} - t_i) + S_i
\]

\[
\text{Area}_{\text{split}}(t_{\text{split}}) = \frac{1}{2} \left(K_{2i}t_{\text{split}}^2 + K_{1i}t_{\text{split}} + K_{0i} \right)
\]

\[
\cdot \frac{|D|}{\max(D_x, D_y, D_z)}
\]
Build time – Standard Directions

- bunny
- sibenik
- fairy
- armadillo
- rover
- dragon
- happy buddha

Seconds to build vs. Directions
Build time – Golden Ratio

Directions

[Kammaje 2007]
Ray tracing the RBSP

- Ray-scene clipping
- Ray preprocessing
- Ray-tree traversal
Ray-scene clipping

• Can clip to scene bounding *k*-DOP
• AABB = less optimal clipping, but usually faster
• Speeds up tracing
 – Well, only when eye is near or external to scene boundary
 – The more pixels covered, the less clipping helps
Clipping

- Use typical slab intersection for each of the M directions (or for AABB, 3 directions)
Precomputation

- For faster traversal, need projected origin and direction
- Project into each of the M directions
Clipping + Precomp

- The slabs intersection test requires projections!
- Precompute as clipping is performed
- *Almost* worth it
- AABB + SSE precomp is faster
Traversal

\[
m = \text{node.getDir}();
\text{oproj} = \text{node.getSplit()} - \text{dot(origin, KdopDirs\text{<M>::d[m]})};
\text{dproj} = \text{dot(direction, KdopDirs\text{<M>::d[m]})};
\text{d} = \text{oproj} ? \text{oproj} / \text{dproj} : \text{copysignf(0.5f*lower, dproj)};
\]

versus

\[
m = \text{node.getDir}();
\text{oproj} = \text{node.getSplit()} - \text{orig[m]};
\text{d} = \text{oproj} ? \text{oproj} \times \text{rcpDir[m]} : \text{copysignf(0.5f*lower, rcpDir[m])};
\]

results in 5 fewer multiplies, 4 fewer adds, and 1 less division per node traversal
Tradeoffs

• Precomputation not free
 – $2M$ dot products, M divisions
 – As M gets large, precomputation could dominate traversal costs, but at $M=49$ still slightly faster, even for smallest test scene
Ray tracing results Bunny
Ray tracing results Sibenik

![Bar chart showing ray tracing results for different configurations: Standard AABB, Standard k-DOP, Golden Ratio AABB, and Golden Ratio k-DOP. The x-axis represents the number of rays (3, 7, 13, 25, 49), and the y-axis represents some performance metric.](image-url)
Ray tracing results Fairy
Ray tracing results Armadillo

![Ray tracing results Armadillo graph](image)
Ray tracing results Rover

![Ray tracing results diagram](image-url)
Ray tracing results Dragon
Ray tracing results Buddha
Build times
Conclusions

- New build for RBSP
 - Asymptotically faster $O(M^3 + MN \log N)$
 - $\sim 50x$ faster build for larger scenes
- Faster render times
 - Roughly 8x
- Number of k-DOP faces/edges empirically constant on average, independent of M and standard vs golden ratio
Future Work

- Better RBSP directions
- Combine with kd-tree or general BSP
- More robust splitting
Acknowledgments

• Funding
 • Army PEO-STRI Contract N61339-04-C-0072
 • DoE Contract DE-AC02-05CH11231 (SciDAC)
 • U.S. ED GAANN grant P200A980307

• Thanks to
 • University of Utah, Stanford, and Marko Dabrovic for providing benchmark models
 • Ravi Kammaje and Thiago Ize for some useful discussion
Thanks!

Mars Rover available at
http://cave-wiki.dri.edu/~coming/rover

budge@cs.ucdavis.edu dan.coming@dri.edu