FluoRender Tutorials

Version 2.15/January 2015
Table of Contents

List of Figures ... 3
Tutorial 1 Downloading and Installing FluoRender ... 4
Tutorial 2 Visualizing Multi-channel Data .. 6
Tutorial 3 Loading Different Volume Formats ... 12
Tutorial 4 Visualizing a Time Sequence .. 17
Tutorial 5 Visualizing Mesh Objects ... 21
Tutorial 6 Measuring Position, Length, and Volume .. 23
Tutorial 7 Channel Segmentation with Paint Brush .. 27
Tutorial 8 Analyzing Components .. 31
Tutorial 9 Image Processing with OpenCL Kernels .. 35
Index ... 37
List of Figures

Figure 1-1. FluoRender's download page. Jan-2015... 4
Figure 1-2. FluoRender's source code download page. Jan-2015 ... 5
Figure 2-1. Layered channel intermixing mode.. 7
Figure 2-2. Depth channel intermixing mode... 7
Figure 2-3. Composite channel intermixing mode.. 8
Figure 2-4. Volume properties.. 8
Figure 2-5. The output adjustment panel.. 10
Figure 2-6. Clipping plane panel.. 11
Figure 3-1. Open volume in the main toolbar... 13
Figure 3-2. Open dialog for Z-stack sequence... 13
Figure 3-3. Setting default colors for excitation wavelengths.. 14
Figure 3-4. Open Olympus formats... 15
Figure 3-5. Open a Prairie XML file... 16
Figure 4-1. Open a TIFF-based time sequence... 18
Figure 4-2. Correct loading of a time sequence.. 19
Figure 4-3. Controls for time sequence playback.. 19
Figure 4-4. Settings for movie export.. 20
Figure 5-1. An example of a mesh-based atlas built with FluoRender and other tools........... 21
Figure 5-2. Mesh properties.. 21
Figure 5-3. Mesh transparency quality settings... 22
Figure 6-1. Real-time coordinate information of mouse cursor.. 23
Figure 6-2. Measurement window... 24
Figure 6-3. Different ruler tools.. 25
Figure 6-4. Track a cell using the ruler tool... 26
Figure 7-1. The “Analyze” window... 27
Figure 7-2. Segmentation with paint brush.. 28
Figure 7-3. Select structures section by section.. 30
Figure 8-1. Component analysis in the “Analyze” window.. 31
Figure 8-2. Components & Tracking window... 32
Figure 8-3. Components visualized in different colors.. 33
Figure 9-1. OpenCL kernel editor.. 35
Tutorial 1 Downloading and Installing FluoRender

FluoRender is a free and “open-source” software package developed by the Scientific Computing and Imaging (SCI) Institute at the University of Utah. You can either download the setup files or the projects of source code.

1. Prepare your computer's hardware and software environment. FluoRender demands fast graphics processing capability of GPUs. It is preferably run on the latest high-end hardware configurations with the latest graphics driver installed. Also make sure your system supports at least OpenCL 1.1 for FluoRender from version 2.15 and later. Failure to comply with the system requirement may result from slow/limited functions to system crash.

2a. To download the executables, go to https://www.sci.utah.edu/download/fluorender.html.

![FluoRender's download page](image)

Figure 1-1. FluoRender's download page. Jan-2015.

2b. Choose the version that you want from a dropdown list of available versions. The most recent version is selected by default.

2c. Make sure the OS in the “distribution” column of the table of files matches your operating system. For example, for FluoRender version 2.15 on Mac OS X, the setup file is FluoRender_2.15.0_osx64.dmg. You can also download a user’s guide as well as this documentation (tutorials) from the list of files.

2d. After downloading finishes, locate the setup file within a file browser of your operating system. Double-click the setup file to initiate the installation process. Depending on the operating system that you are using, the installation process can vary. However, you should be able to follow the steps according to screen prompt. Refer to the user’s guide for more details.

2e. Locate the installed executable or its shortcut on your operating system and launch FluoRender.

3a. To download the source code, go to https://github.com/SCIInstitute/fluorender.
3b. Third-party libraries are needed in order to build FluoRender, including wxWidgets (https://www.wxwidgets.org/) and Boost (http://www.boost.org/). Make sure that you download these libraries as well.

3c. Additionally, you will need CMake (http://www.cmake.org/) and VisualStudio on Windows, or XCode on Mac OS X.

3d. Build the third party libraries first. Then, generate VisualStudio or XCode projects using CMake. Refer to the instructions on FluoRender’s github webpage for more details.

3e. Build FluoRender using VisualStudio on Windows, or XCode on Mac OS X.
Tutorial 2 Visualizing Multi-channel Data

FluoRender allows visualization of multiple channels with unprecedented flexibility. Follow these steps to prepare, load, and visualize multi-channel volumes. You may need to first read the user’s guide to get familiar with the terminology used in FluoRender’s user interface elements. The user’s guide can be either accessed within FluoRender, or downloaded here: https://www.sci.utah.edu/download/fluorender.html.

1. Prepare data. For best visualization results, make sure all channels have a coherent spatial resolution. TIFF or original microscopy formats are the preferred storage formats. If TIFF is used, TIFF Z-stacks, instead of individual sections, are preferred. Make sure that the files are properly named for easy organization. It is also recommended that all files are saved in one directory for easy loading. A three-channel sample data set can be downloaded from FluoRender’s website: http://www.sci.utah.edu/software/fluorender.html.

2. To load multi-channel data, click “Open Volume” in the main toolbar. In the file browser dialog, choose all files, and then click “Open”. All selected files are loaded and visualized in FluoRender. If loading takes a long time, a progress dialog will show.

 ![Open Volume](image)

 If channels to be visualized simultaneously are large in spatial resolution or number of channels, enable “large data streaming” for improved interactivity.

 To enable “large data streaming”, first click “Settings” in the main toolbar. In the setting dialog, choose the “Performance” tab. Then, under the “Large Data Streaming” section, check “Enable streaming for large datasets”. You may also adjust the detailed settings to match your system’s hardware configuration.

3. All loaded files are visualized with default settings. You can rotate, zoom, or pan the render view using mouse interactions. To rotate the view, click anywhere in the render view with the left mouse button, hold down the left mouse button, and then drag the mouse to the intended direction. To zoom the view, click anywhere in the render view with the right mouse button, hold down the button, and then drag the mouse. To pan the view, click anywhere in the render view with the middle mouse button, hold down the middle button, and then drag the mouse to the intended direction.

4. FluoRender provides three channel intermixing modes to best visualize features from different channels in an interactive setting. To switch among the channel intermixing modes, use buttons in the top toolbar of the render view.

 - **Layered**. Channels are rendered individually and then layered one on top of another. Top channels in the workspace are also rendered on top. Changing the order of channels in the workspace will affect the visualization result. Layered mode is good for un-occluded visualization of features from top channels.
Figure 2-1. Layered channel intermixing mode.

Depth 🌈. Channels are intermixed with correct spatial occlusion. Depth mode is good for inspecting spatial relationships between channels.

Figure 2-2. Depth channel intermixing mode.
Composite mode. Channels are rendered individually and then their colors are summed up. Composite mode is good for visualizing otherwise occluded features of colocalized structures.

Figure 2-3. Composite channel intermixing mode.

5. You can select a visualized channel from both the render view and the workspace panel. To directly select a channel from the render view, click where a channel has the strongest signal intensity. The selected channel is highlighted in the “Workspace” panel, its properties loaded into the “Property” panel. To select a channel from the “Workspace” panel, click the name of a channel to highlight it.

6. You can reorganize visualized channels in the “Workspace” panel. To reorganize the order of channels, click and drag the name of a channel to reorder it. To rename a channel, first select it in the “Workspace” panel. A corresponding file name will also be highlighted in the “Datasets” panel. Click “Rename” in its toolbar. It then allows you to type a new name for the selected channel.

7. When a channel is selected and visible, its adjustable properties are shown in the “Property” panel. You can adjust the following parameters. You should see the results of each parameter immediately when you change it.

Figure 2-4. Volume properties.
Gamma. It adjusts the nonlinear intensity and transparency mapping. You can decrease it to remove noise signals.

Saturation. It sets a threshold value that maps to the maximum output, or “saturated” output. If a channel has low input intensity signals, decrease this parameter to enhance low intensity signals.

Luminance. It is linked to the luminance of a channel’s color. Decrease this value if a channel’s input is too bright.

Alpha. It is a multiplier to a channel’s transparency mapping. Decrease this parameter to make a channel more transparent.

Extract boundary. It is a threshold value for the gradient magnitude of a channel. Increase this parameter to extract salient boundary structures.

Threshold (low and high). Only voxels with intensity values between low and high threshold values are visualized. Use this setting to exclude low intensity noise.

Color. It is the base color of a selected volume channel. Use different colors to distinguish multiple channels.

Color map. You can enable a color map to assign different colors to low and high intensity values of a channel. The mapping of color range can be adjusted using its low and high settings.

Invert. It inverts low and high intensity signals.

Shading. You can enable shading effect for a channel.

Light. Use this parameter to adjust the ratio between highlight and shade.

Shadow. You can apply shadow effect for a channel.

MIP. It turns on/off MIP, or maximum intensity projection, mode. Use this mode to visualize concentrations of high intensity signals.

Sample rate. It determines the number of slices for rendering one voxel. A higher value improves the rendering quality.

Interpolation. It decides the interpolation methods for volume rendering. If it is enabled, trilinear interpolation is used; otherwise nearest neighbor lookup is used.

Smoothing. You can enable smoothing if high frequency artifacts are observed at high zoom levels.

Spacing. If the sample spacing is not read correctly from the metadata, or the default values are incorrect, change the spacing values to correct the voxel size in X, Y, and Z directions.
8. You can save the settings for a satisfied visualization result, and apply to similar data sets. To save default settings, click “Save settings”. To recall default settings, click “Reset”.

9. In addition to properties of each channel, you can adjust the output of intermixed result of multiple channels. These settings are in the “Output Adjustment” panel on the left side of the render view. Three parameters are available for making adjustment to each output color channel.

![Figure 2-5. The output adjustment panel.](image)

Gamma. It uses a gamma curve to remap the output color intensities in a nonlinear fashion.

Luminance. It is a multiplier to output color intensities.

Equalization. Depending on current selection in the “Workspace” panel, the effect of this parameter can vary. When a channel or its group is selected, it enhances details in low output color intensities; when a render view is selected, it suppresses high output intensity signals, especially those out of the range of display hardware. Settings for these two selection types can be used together.
10. When deep 3D structures are occluded, use clipping planes to reveal them. When a channel is selected in the “Workspace” panel, its clipping plane settings are shown in the “Clipping plane” panel. You can translate and rotate clipping planes. To translate a clipping plane, use one of the six sliders. The clipping plane currently being translated is shown in the render view. To rotate all six clipping planes, use one of the three sliders for rotation around X, Y, or Z axis.

Figure 2-6. Clipping plane panel.
Tutorial 3 Loading Different Volume Formats

FluoRender supports a series of volume formats. Loading one specific format can be different from another.

1a. Loading a Z-stack sequence. A Z-stack sequence is a volume saved as a series of 2D image sections. Each 2D image section is saved as a TIFF file. The names of the TIFF files need to follow a naming convention. First, all file names are composed of a common character string and a digit string. The common character string is the same through all file names and is used to identify the stack; the digit string is for identification of the Z image section order. Second, the digit string can appear at any place within the common character string. However, if there are more than one separated digit string within the file names, only the last one is used as the string to order the Z sections. For example, a legitimate Z-stack sequence looks like:

- e145scx32neuro007z01RGB.tif
- e145scx32neuro007z02RGB.tif
- :
- e145scx32neuro007z34RGB.tif

Notice that although in one file name there are more than one separated digital string, only the last one (after letter “z” and before “RGB”) is used to identify the order of Z sections.

Additionally, each TIFF file contains only one image section, which could have multiple channels.

Third, all files need to be in the same file folder.

1b. Click “Open Volume” in the main toolbar of FluoRender.
1c. In the file browser dialog, browse to the folder containing all section files. Select just one file of the Z-stack sequence. Check “Read a sequence as Z slices” in the “Additional options”. Then, click “Open”.

Figure 3-1. Open volume in the main toolbar.

Figure 3-2. Open dialog for Z-stack sequence.
2a. Loading Olympus microscopy formats. OIB and OIF files are supported. An OIB is a binary file that contains all necessary data and information. However, an OIF is an index file that should be accompanied by a file folder of the identical name plus ".files". Since the folder contains the actual data, you need to copy both in order to have it opened correctly.

2b. FluoRender can read the metadata from Olympus formats and assign colors based on excitation wavelengths. To set the default colors, click "Settings" in the main toolbar. Go to the fourth panel of the setting dialog “File format”. Choose the default colors for each wavelength range. Then, click “Done” to save the settings and close the setting dialog.

![Setting default colors for excitation wavelengths](image)

Figure 3-3. Setting default colors for excitation wavelengths.

2c. To load an Olympus file, click “Open Volume” in the main toolbar. In the file browser dialog, browse to the folder containing the Olympus file. Choose *.oif or *.oib files. Make sure “Read a sequence as Z slices” is unchecked. Then, click “Open” to load selected files.
3. Loading Zeiss format LSM. An LSM file can be opened similarly as both a multi-page TIFF (Z-stack in a single file) and an OIB file.

4a. Loading Prairie XML format. A Prairie XML file is similar to an OIF file, which is an index to a series of TIFF sections. However, the XML file should be saved in the same folder as the TIFFs. You need to copy the entire folder generated by PrairieView in order to open the scan correctly. Also notice that you are not supposed to rename anything in order for FluoRender to correctly locate the TIFFs.

4b. To load a Prairie XML file, click “Open Volume” in the main toolbar. In the file browser dialog, find and select just the XML file.
Figure 3-5. Open a Prairie XML file.
Tutorial 4 Visualizing a Time Sequence

FluoRender supports visualization a time sequence. A time sequence is a series of scans over time, a volume at each time point. Most of the microscopy formats support time sequence storage. It is recommended that you keep the original formats if supported by FluoRender for best performance. In addition, a TIFF sequence can be loaded as a time sequence on condition that their file names follow a certain naming convention.

1a. A time sequence based on the TIFF format need to be named correctly. First, the name of a file in the sequence is composed of three parts: a common character string, a time sequence identifier, and a digit string. The common character string and the time sequence identifier have to stay the same through the entire sequence. The time sequence identifier can only appear once in one file name. The digit string is used to order time points. Second, the digit string has to follow the time sequence identifier without separation. The group of these two parts can appear at any place within the common character string. A legitimate time sequence based on TIFF format looks like:

```
e145scx32neuro007_T01RGB.tif
e145scx32neuro007_T02RGB.tif
:
e145scx32neuro007_T34RGB.tif
```

It is recommended that each TIFF file stores the entire volume at one time point.

Third, all files of the sequence need to be saved in the same folder.

1b. To load the TIFF-based time sequence, click “Open Volume” in the main toolbar. In the file browser dialog, browse to the folder containing the time sequence. Select just one file of one time point. Make sure the time sequence identifier in the “Additional options” matches that of the sequence. Then, click “Open” to load the sequence.
1c. If a time sequence is saved in one of the supported microscopy formats, you can load it normally. The first time point is visualized.

2. Regardless the format, if a time sequence is correctly loaded, in the “Record/Export” panel, “Time sequence” is automatically checked. In addition, the range of time points in the sequence is also shown as “Start Time” and “End Time”.

You can still check the “time sequence” option even if a time sequence is not loaded correctly. However, this becomes the “batch” mode instead of time sequence playback. The batch mode considers all files within a folder as a batch, it uses the alphabetical order of the file names to play back the sequence. If this happens to a time sequence, first make sure you name the sequence correctly and then reload it. Forcing an incorrectly named time sequence into batch mode may result out-of-order files.
3. You can play back the time sequence by clicking the “Play” button. Clicking it twice will stop the playback. Once the playback stops, you can rewind it to the beginning of the sequence by clicking “Rewind”. To step the time sequence one time point at a time, click to go forward, and to go backward. Additionally, you can type in the value for the “Current Time” or use the time slider.

Figure 4-3. Controls for time sequence playback.
4. The playback speed of a time sequence is determined by the FPS (Frames per Second) value, movie length, and time point range. For example, 30 FPS means the output is rendered at a speed of 30 frames per second. When the movie length is 8 seconds, there will be 30x8=240 frames rendered. However, there are only 209+1=210 time points, which means some output frames will have the same time point in order to fill the total length of 8 seconds. You can adjust any of these parameters to fine-tune the playback speed of a time sequence. For example, you can increase the movie length for a slower playback speed.

5. You can save the rendering of a time sequence playback as a series of 2D images, or a QuickTime movie. To do so, rewind the time sequence to its beginning, and then click “Save”. In the “Save Movie” dialog, browse to a folder for saving the movie file. In the “save as type” dropdown list, you can choose to save the movie as either a QuickTime movie file (*.mov), or a sequence of TIFF files (*.tif). Depending on the choice of file type, there are two different sets of options available. For a TIFF sequence, you can choose to compress with the Lempel-Ziv-Welch algorithm (LZW). To use LZW compression, check “Lempel-Ziv-Welch Compression”. For a QuickTime movie file, you can set its bit rate. To set the bit rate, type in a value in the range of 0-20. After you finish typing the bit rate value, an estimation of the QuickTime movie file size is calculated and updated in the “Estimation size” text box. After all these settings, click “Save” to render the sequence and output the movie.

![Save Movie Sequence](image)

Figure 4-4. Settings for movie export.
Tutorial 5 Visualizing Mesh Objects

Mesh objects can be visualized along with volume channels. It is possible to make detailed anatomical atlases comprising of both volumes and mesh objects.

1. Prepare data. Only Wavefront OBJ format is currently supported. The OBJ format is a text file containing geometry information. In addition to the basic feature set of the OBJ format, FluoRender is able to support materials and textures. Textures have to be saved in TGA format. An alpha channel can be saved with the TGA format to modulate transparency. FluoRender can be used to generate mesh objects from the selected structures of a volume channel. However, we recommend using mesh editing software packages for well-defined results. Here is an on-line tutorial on using Maya to build muscles from volume data: http://www.cs.utah.edu/~wanyong/maya/.

2. To load mesh objects, click “Open Mesh” in the main toolbar. In the file browser dialog, choose one or multiple mesh files and load them. The loaded mesh files should be visualized in the render view.

3. The same render view interactions for volume channels apply similarly to visualizing mesh objects. You can rotate, zoom, and pan the view. Additionally, you can click and select a mesh object directly from the render view.

4. The selected mesh object’s name is highlighted in the “Workspace” panel. Its look can be further customized through the settings in the “Property” panel.

![Figure 5-1. An example of a mesh-based atlas built with FluoRender and other tools.](image)

![Figure 5-2. Mesh properties.](image)

Diffuse color. The base color of the mesh object.
Specular color. The color of the mesh object’s highlight.

Shininess. The size of the mesh object’s highlight.

Transparency. The overall transparency of the mesh object. Lower is more transparent.

Shadow. It applies a shadow effect on the mesh object. Its strength can be adjusted with the slider.

5. If any number of mesh objects are semi-transparent either by setting or texture, depth peeling is used to remove artifacts from random ordering. To adjust the quality of semi-transparent mesh objects, adjust the depth peeling layers in the “Settings” dialog.

To open the “Settings” dialog, click “Settings” in the main toolbar. The depth peeling settings are under the second tab “Rendering”. Increase the number of peeling layers for better transparency quality.

Figure 5-3. Mesh transparency quality settings.
Tutorial 6 Measuring Position, Length, and Volume

When volume channels are visualized with FluoRender, you can acquire several quantified measurements using interactive tools.

1. Prepare data. If your data set is in one of the supported microscopy formats, it is likely that the size information is automatically retrieved from the metadata. You can turn on the scale bar in render view to make sure the size of a loaded data set is correct. To turn on the scale bar, click “Scale bar” in the top toolbar of the render view panel. Click it twice to enable the text for scale bar length and unit. If your data set is in an exchange format, such as TIFF, and does not contain size information, you can manually set the sample spacing, or voxel size, after loading. To set the sample spacing, click the name of a volume channel in the “Workspace” panel to load its properties into the “Property” panel. Then, set the spacing of X, Y, and Z to correct numbers. The subsequent measurement operations use the spacing information to calculate physical size.

2. To get real-time information on the position under the mouse cursor, turn on “Information” in the top toolbar of the render view panel. When you move the mouse cursor within the render view, the head-up information shows current cursor position.

3. More precise measurement can be made with tools in the “Measurement” window. To open the “Measurement” window, click the downward arrowhead on the right side of “Analyze” button in the main tool bar. In the dropdown menu, select “Measurement…”.

Figure 6-1. Real-time coordinate information of mouse cursor.
4. To get the coordinates of a point location, use the “Locator” tool. Click “Locator” in the toolbar of the “Measurement” window, and then click on a structure of a volume channel to place one locator. The position information is displayed in the list below. You can rotate the view to see that the locator is placed in 3D space. If the “Locator” button is kept pressed, you can create as many locators as you want.

5. The depth of a locator is automatically determined based on the underlying data. There are three options for fine-tuning the calculation of depth.

View plane. This option calculates the depth as a fixed value on a plane perpendicular to viewing direction. Use this option if there is no salient structures and you want to adjust the locator’s position manually.

Maximum intensity. This option calculates the depth at a voxel having the maximum intensity value along the viewing direction. If multiple voxels all have the maximum value, the closest is chosen. Use this option if you want to place the locator at the center of a structure, which has high intensity values inside.

Accumulated intensity. This option calculates the depth at a voxel that the accumulated transparency of the voxels in front of it becomes opaque. Use this option if you want to place the locator on the structural surface.
6. To manually change the position of a locator, click “Edit” in the toolbar of the “Measurement” window. You can click and drag a locator within the render view. The settings that influence the depth calculation are still in effect when moving a locator.

7. To measure the volume of a certain structure, hold down the “Shift” key on keyboard in locator mode. This turns the locator tool into a brush tool. You can paint on a structure to select it. When you release the left mouse button, a locator is placed at the centroid of the selected structure. The volume of the selected structure is also calculated and shown in the list below. Settings for paint brush tools also apply to the paint brush in locator mode.

8. To measure the distance between two points, use the 2-point ruler tool. Click “2pt ruler” in the toolbar of the “Measurement” window, and then click twice in the render view for its starting and ending points. All settings for the locator tool apply similarly to the 2-point ruler tool. The length between the two points are shown in the list below. You can also modify the position of each ruler point using the “Edit” tool.

9. To measure the distance along a path of multiple points, use the 2+-point ruler tool. Click “2+pt ruler” in the toolbar of the “Measurement” window, and then click as many times as you want along a path. Right-click to end the path. The length along the path is shown in the list below. All settings for the locator tool apply similarly and you can edit the position of each ruler point using the “Edit” tool.

10. Although the 2+-point ruler tool is not originally designed for tracking the movement of a structure, you can use it as a tracking tool. To use it as a tracking tool, make sure that the option “Transient” is unchecked. When this option is checked and a time sequence data set is loaded, a ruler tool can only exist in one particular time point, hence “transient”. When this option is off, you can create a 2+-point ruler for different time points. To use this feature, go to the first time point, click 2+-point ruler tool, hold
down “Shift”, and paint on the structure to create the first point of the tracking. Then, advance to the next point, use the tool similarly to create the second point of the tracking. Continue this process until all time points are covered. The resulting path is the tracking of the structure.

Figure 6-4. Track a cell using the ruler tool.

11. You can export the tracking result to a text file. To export the result, click “Export” in the toolbar of the “Measurement” window. Then, choose a path and file name to save. The saved file is compatible with most spreadsheet editors including Microsoft Excel. You can import the result into a spreadsheet editor for further analysis.
Tutorial 7 Channel Segmentation with Paint Brush

FluoRender allows selecting and extracting 3D structures from volume channels. Users can directly paint on visualizations in render view and select desired structures.

1. Prepare data. Many segmentation functions are based on visualization results. Make sure that you have followed the previous tutorials to generate a satisfactory visualization. Although the paint brush tools can be used with bricks in data streaming mode, it is recommended that you turn off data streaming for best performance and error-free result. Changes to data streaming mode have to be made before data loading. To turn off data streaming, go to the “Performance” panel in the “Settings” dialog, and uncheck “Enable streaming for large datasets”.

2. Tools and settings for the paint brush can be accessed from the “Analyze” dialog. To open the “Analyze” dialog, click “Analyze” in the main toolbar.

3. To initiate a selection, click the “select” button in the toolbar of the “Analyze” dialog. When you move the mouse cursor into a render view, the regions that a selection brush stroke can be applied are represented by circles. You can hold down the left mouse button and drag to apply a selection brush stroke. Three dimensional structures under the stroke region can be selected.
Figure 7-2. Segmentation with paint brush.

4. There are several settings that further control the selection brush’s behavior, which you can adjust before applying strokes.

Threshold. It sets a seeding value to be applied to the center stroke region. Voxels with intensity values greater than the threshold are selected as seeds. Lower this value if you want to select more low intensity signals.

Growth. It determines the number of iterations for a diffusion calculation within the outer stroke region. Strong means more iterations, which allows selection to grow to a larger size.

Center size. It controls the size of the inner circle of a brush stroke. Lower the value to make selections on fine structures.

Grow size. It controls the size of the outer circle of a brush stroke. The size can be controlled by the mouse wheel. It can be turned off by unchecking the check box to the left of the slider. When it is turned off, no diffusion is calculated. The center size is in turn controlled by the mouse wheel.

5. After an initial selection using the selection brush, you can either append new regions to the existing selections, or unselect them. To append regions that are unconnected to the existing selections, use the selection brush again. To append regions that are connected to the existing selections, use the diffuse brush. Click the “Diffuse” button in the toolbar to choose the diffuse brush. The diffuse brush has only the outer circle for diffusion calculation. To unselect the existing selections, use the unselect brush. Click the “Unselect” button in the toolbar to choose the unselect brush.
6. You can apply brush strokes from different angles to achieve the best segmentation result. Use the following keyboard shortcuts to quickly switch between paint brush tools and normal render view interactions: holding down the “Shift” key for the selection brush; holding down the “Z” key for the diffuse brush; holding down the “X” key for the unselect brush.

7. You can let FluoRender estimate an initial threshold value by checking “Auto Thresh”. When this option is checked, you do not need to set a threshold value before applying a selection brush stroke. You can paint directly and FluoRender will calculate a threshold value for you. The calculation of the threshold value is based on the intensity distribution in the region covered by the stroke.

8. You can let the diffusion calculation stop at salient structural boundaries by checking “Edge Detect”. For example, check this option when you want to select just one cell from a group of cells that are in close proximity to each other.

9. You can let FluoRender automatically select only un-occluded structures by checking “Visibly Only”. When this option is checked, all seeding voxels are filtered to see if they are occluded by signal accumulation. Occluded seeds are discarded. You can check this option, for example, when you want to select just one cell from a group of cells that are occluding each other.

10. The selected part of a volume channel can be either extracted or removed from the original data, creating a new channel. To create a new channel by extracting the selected part, click “Extract” in the toolbar. To create a new channel by removing the selected part, click “Erase” in the toolbar.

11. Brush tools can be used in conjunction with clipping planes. You can set clipping planes to restrict the rendering of a channel to a sub-region. When you apply a brush stroke, selection can be only made within the visible region. A good example is that you can clip a volume to a single image section, and then select structures section by section, allowing classical 3D segmentation operations found in many other tools. More flexibility can be achieved as you may include any number of image sections between two facing clipping planes.
Figure 7-3. Select structures section by section.
Tutorial 8 Analyzing Components

Components can be naturally presented in original channel data as disconnected structures, or manually identified using the paint brush tools. You can perform analysis on those components in either case.

1. Prepare data. It is recommended that you turn off data streaming for best performance and error-free result. Changes to data streaming mode have to be made before data loading. To turn off data streaming, go to the “Performance” panel in the “Settings” dialog, and uncheck “Enable streaming for large datasets”.

2a. You can let FluoRender automatically identify components and perform the analysis. Select the channel from the “Workspace” panel. The component analysis functions are in the “Analyze” window. To open the “Analyze” window, click “Analyze” in the main toolbar.

2b. Component analysis can be performed on either the selected part or the entire data set of a channel. If you want to perform analysis on the selected structures, use the paint brush tool to first select the desired structures, and then check “Selct. Only” in the “Component Analyzer” section of the “Analyze” window. If you want to perform analysis on the entire data set, leave “Selct. Only” unchecked.

2c. Before carrying out the component analysis, several settings can be adjusted.

Threshold. It sets a value to separate high intensity signals from low intensity noise. Voxels with intensity values below the threshold do not take part in the component analysis. For example, two cells connected by low intensity voxels can be separated by adjusting this value and calculated as two components.

Min (voxel count). It sets a value to exclude small-sized components whose voxel count is below the setting. Set this value to 10-20 to remove common noise signals. Set this value to 0 if you want to include every component.
Max (voxel count). It sets a value to exclude large-sized components whose voxel count is greater than the setting. You can disable a cap on maximum voxel count by checking “Ignore Max”.

2d. Click “Analyze” to perform the component analysis.

2e. After the analysis finishes, a brief statistical result is shown as the total number of components (Components), and total voxel count (Total Volume).

2f. Components being analyzed are highlighted as if selected by the paint brush. You can create new channels from the selected components. To create a channel for each component, click “Multi-Channels”; to create red, green, and blue channels from a random color assignment of components, click “Random Colors”.

2g. Detailed component information is stored with annotations generated from analysis. The annotations are initially hidden. You can add it to render view by clicking “Show Annotations”. To check the detailed component information, save the collection of annotations in the “Dataset” panel. Then, open the saved annotation file with a text editor. Additionally, the annotation file is formatted to be compatible with most spreadsheet editing software. You can import the annotation file into, for example, Microsoft Excel.

3a. You can label component manually or modify automatically generated components. To do so, you will need tools in the “Components & Tracking” window. To open “Components & Tracking” window, click the downward arrow to the right of the “Analyze” button in the main toolbar. In the dropdown menu, select “Components & Tracking”.

![Components & Tracking window](image-url)

Figure 8-2. Components & Tracking window.
3b. If you want to label components manually, you need to create a label volume before any operations. To create a label volume, click “Add Label” in the “Analyze & Validate” section of the “Components & Tracking” window. You do not need to do so if an automatic component analysis has been performed.

3c. To visualize individual components in different highlighted colors, you need to turn on “4D script” function. To turn on “4D script”, go to the “Settings” dialog, on the first panel “Project”, check “Enable execution of a script on 4D data during playback”. Although you do not need an actual 4D script file to be executed, nor a time sequence, you need this option because component labeling is closely related to tracking features in 4D. To best distinguish highlighted components and unselected data, it is recommended to assign a white color to the volume channel.

3d. Use the selection brush to select a structure that you want to label as a single component. All settings for the paint brush tool are available for making the selection of the structure.

3e. Type an integer number into the text input box to the right of “ID edit tools:” in the “Analyze & Validate” section of the “Components & Tracking” window. Then, click “New ID”. The integer number is assigned to the highlighted component. Its basic information is also added to the ID list below. If you happen to assign an existing ID to the component, FluoRender resolves the conflict by randomly generating an ID.

3f. To label a second component, you need to first clear the existing selection. To clear the selection, click “Clear”.

![Figure 8-3. Components visualized in different colors.](image-url)
3g. Now you can type in a second integer number, select a structure, and apply the new ID.

3h. To show all labelled components, type “all” into the text input box to the right of “Selection tools:”, and then click “Append”. All labelled components are selected and highlighted. However, components with voxel counts below the “Component size” setting will not be selected. Adjust “Component size” to exclude small-sized components such as noise data.

3i. To acquire detailed information of labelled components, first add them all to the ID list. Then, click “Analyze” in the “Components & Tracking” window. The results are shown in the “Output” box at the bottom of the “Components & Tracking” window. If you want to save the results as a text file, click “Save Analy.”.
Tutorial 9 Image Processing with OpenCL Kernels

FluoRender allows you to take advantage of modern graphics hardware for image processing with parallel computing. OpenCL is the interface language used in FluoRender to perform computations on a selected volume channel. A piece of OpenCL code for a specific image processing function is called a kernel.

1. Prepare data. An OpenCL kernel can be applied to a volume channel loaded and visualized in FluoRender. Although FluoRender automatically applies a kernel to each data brick when data streaming is enabled, it is recommended that data streaming is disabled for best performance. Changes to data streaming mode have to be made before data loading. To turn off data streaming, go to the “Performance” panel in the “Settings” dialog, and uncheck “Enable streaming for large datasets”.

2. Kernels are managed in the “OpenCL kernel editor” window. To open “OpenCL kernel editor” window, click the downward arrowhead to the right of the “Analyze” button in the main toolbar. In the drop-down menu, choose “OpenCL kernel editor”.

3. Names of kernel files (*.cl) are listed in the list on the left. These files are in the 'CL_code' folder of FluoRender’s installation folder. Click the name of a kernel file, and its code is loaded into the code editor on the right.

4. You can browse and load a kernel file saved elsewhere than the default folder. To browse and load a kernel file, click “Browse”. In the file browser dialog, choose a valid OpenCL kernel file. Its code is loaded to the code editor on the right of the window.
5. You can modify a loaded kernel code, or write your own code from scratch. Code can be edited in the code editor on the right of the window. A reference manual of OpenCL 1.1 can be found here: https://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/.

6. To execute a kernel, click "Run". If the kernel fails to execute, error messages are output to the "Output" box at the bottom.

7. A new channel is created as the result of the execution of a kernel. If you repeatedly execute a kernel on a newly generated channel, no more new channel will be created again.
Index

A
Alpha ... 9

C
Channels ... 6, 21, 23, 27
Clipping plane .. 11, 29
Colocalized .. 8
Component analysis 31
Composite mode ... 8

D
Depth calculation ... 24
Depth mode ... 7

E
Equalization .. 11

F
FPS ... 19

G
Gamma ... 9, 10

I
Install .. 4
Interpolation .. 9

L
Layered mode .. 6

M
Measurement .. 23
MIP .. 9

N
Noise .. 9, 31, 34

O
OpenCL ... 35

P
Paint brush ... 25, 27, 31
Project .. 4

S
Sample rate ... 9
Select ... 8, 25, 27, 32, 33
Sequence ... 12, 17
Settings ... 6, 10, 14, 20, 21, 22, 25, 28, 31
Shading ... 9
Shadow ... 9, 22
Streaming ... 6, 27, 31, 35

T
Threshold ... 9, 28, 29, 31
Tracking ... 25, 32