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Abstract—
A pervasive problem in neuroscience is determining which

regions of the brain are active, given voltage measurements
at the scalp. If accurate solutions to such problems could
be obtained, neurologists would gain non-invasive access to
patient-specific cortical activity. Access to such data would
ultimately increase the number of patients who could be
effectively treated for neural pathologies such as multi-focal
epilepsy.

However, estimating the location and distribution of elec-
tric current source within the brain from electroencephalo-
graphic (EEG) recordings is an ill-posed problem. Specifi-
cally, there is no unique solution and solutions do not depend
continuously on the data. The ill-posedness of the problem
makes finding the correct solution a challenging analytic and
computational problem.

In this paper we consider a spatio-temporal method for
sources localization, taking advantage of the entire EEG
time series to reduce the configuration space we must evalu-
ate. The EEG data is first decomposed into signal and noise
subspaces using a Principal Component Analysis (PCA) de-
composition. This partitioning allows us to easily discard
the noise subspace, which has two primary benefits: the
remaining signal is less noisy, and it has lower dimensional-
ity. After PCA, we apply Independent Component Analysis
(ICA) on the signal subspace. The ICA algorithm separates
multichannel data into activation maps due to temporally in-
dependent stationary sources. For each activation map we
perform an EEG source localization procedure, looking only
for a single dipole per map. By localizing multiple dipoles
independently, we substantially reduce our search complexity
and increase the likelihood of efficiently converging on the
correct solution.

Keywords: EEG, ICA, PCA, source localization, realistic
head model

Introduction

Electroencephalography (EEG) is a technique for the
non-invasive characterization of brain function. Scalp elec-
tric potential distributions are a direct consequence of in-
ternal electric currents associated with neurons firing and
can be measured at discrete recording sites on the scalp
surface over a period of time.

Most measured, non-background brain activity is gener-
ated within the cerebral cortex, the outer surface (1.5-4.5
mm thick) of the brain comprised of approximately ten
billion neurons. The active regions within the cortex are
generally fairly well localized, or focal. Their activity is
the result of synchronous synaptic stimulation of a very
large number (105−106) of neurons. Cortical neurons align
themselves in columns oriented orthogonally to the cortical
surface [1]. When a large group of such neurons all depo-
larize or hyperpolarize in concert, the result is a dipolar
current source oriented orthogonal to the cortical surface.

It is the propagation of this current that we measure using
EEG.

Estimation of the location and distribution of current
sources within the brain based on potential recordings from
the scalp (source localization) is one of the fundamental
problems in electroencephalography. It requires the solu-
tion of an inverse problem, i.e., given a subset of electro-
static potentials measured on the surface of the scalp, and
the geometry and conductivity properties within the head,
calculate the current sources and potential fields within the
cerebrum. This problem is challenging because solutions do
not depend continuously on the data and because it lacks a
unique solution.1 The lack of continuity implies that small
errors in the measurement of the voltages on the scalp can
yield unbounded errors in the recovered solution. The non-
uniqueness is a consequence of the linear superposition of
the electric field: different internal source configurations
can produce identical external electromagnetic fields, espe-
cially when only measured at a finite number of electrode
positions [1], [3], [4].

However, if accurate solutions to such problems could
be obtained, neurologists would gain non-invasive access to
patient-specific cortical activity. Access to such data would
ultimately increase the number of patients who could be
effectively treated for pathological cortical conditions such
as epilepsy [5], [6].

There exist several different approaches to solving the
source localization problem. Initially, many of these were
implemented on spherical models of the head [7], [8]. Those
methods that proved promising were then extended to work
on realistic geometry [9]. One of the most general meth-
ods for inverse source localization involves starting from
some initial distributed estimate of the source and then
recursively enhancing the strength of some of the solution
elements, while decreasing the strength of the rest of the
solution elements until they become zero. In the end, only
a small number of elements will remain nonzero, yielding a
localized solution. This method is implemented, for exam-
ple, in the FOCUSS algorithm [10]. Another example of an
iterative re-weighting technique is the LORETA algorithm
[11].

A second source localization approach incorporates a pri-
ori assumptions about sources and their locations in the
model. Electric current dipoles are usually used as sources,
provided that the regions of activations are relatively fo-

1Mathematically, problems fitting such a profile are termed ill-posed
[2].
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cused [3]. Although a single dipole is the most widely used
model, it has been demonstrated that a multiple dipole
model is required to account for a complex field distribution
on the surface of the head [12]. If the distance between the
dipoles is large or the dipoles have entirely different tem-
poral behavior, the field patterns may exhibit only minor
overlap and they can be fit individually using the single-
dipole model. However, more often than not, examination
of spatial surface topographies can be misleading, as the
time series of multiple dipoles overlap and potentials can-
cel each other out [4], [13]. In such cases, one must employ
a third approach: a spatio-temporal model.

The main assumption of this model is that there are sev-
eral dipolar sources that maintain their position and orien-
tation, and vary just their strength (amplitude) as a func-
tion of time. Now, rather than fit dipoles to measurements
from one instant in time, dipoles are fit by minimizing the
least-square error residual over the entire evoked potential
epoch [14].

A more advanced version of this spatio-temporal ap-
proach is developed in the multiple signal classification al-
gorithm, MUSIC [15], and in its extension, RAP-MUSIC
[16]. A signal subspace is first estimated from the data and
the algorithm then scans a single dipole model through the
three-dimensional head volume and computes projections
onto this subspace. To locate the source, the user must
search the head volume for local peaks in the projection
metric. The RAP-MUSIC extension of this algorithm au-
tomates this search, extracting the location of the sources
through a recursive use of subspace projection.

While the above methods represent significant advances
in source localization, they fail to address the problem most
recently identified by Cuffin in [17]: “Solutions to multi-
ple dipole ... sources are much less reliable than solutions
for single-dipole sources. These solutions can be very sen-
sitive to ... noise. At present, this sensitivity limits the
usefulness of these solutions as clinical and research tools.”
In this paper, we introduce a novel approach for spatio-
temporal source localization of independent sources. In
our method, we first separate the raw EEG data into inde-
pendent sources. We then perform a separate localization
procedure on each independent source. Because we local-
ize sources independently, our method is just as reliable as
single dipole source localization methods.

The steps of our method are depicted in Fig. 1. We begin
by extracting the signal subspace of the EEG data using a
Principal Component Analysis (PCA) algorithm. This step
removes much of the noise from the data and reduces its di-
mensionality by truncating lower order terms of the decom-
position (i.e., discarding the noise subspace). We then di-
vide the PCA signal subspace into several components, us-
ing the recently developed Independent Component Anal-
ysis (ICA) [18], [19], [20] signal processing technique. The
result of this preprocessing is a set of time-series signals
(which sum to the original signal) at each electrode, where
each time-series corresponds to an independent source in
the model. The number of different maps created by ICA
is equal to the number of temporally independent, station-
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Fig. 1. A depiction of the steps of our algorithm. A) Measured sig-
nals are recorded at the scalp surface through EEG electrodes;
the underlying neural sources (which we will model as dipoles)
are unknown. B) With PCA decomposition, truncation, and re-
construction, much of the noise is removed from the EEG data.
C) Using the ICA algorithm, the time signals can be decomposed
into statistically independent activation maps (summing these
activation maps returns the original measured signals). C) For
each independent activation map, the single dipole source that
best accounts for the map’s voltages is localized. D) Integrated
together, these independent dipole sources reproduce the signal
from B).

ary sources in the problem. To localize each of these in-
dependent sources, we solve a separate source localization
problem. Specifically, for each independent component, we
employ a downhill simplex search method [21] to determine
the dipole which best accounts for that particular compo-
nent’s contribution of the signal.

In our study we use simulated data obtained by placing
dipoles in a computational model at positions correspond-
ing to observed epileptic sources in children with Landau-
Kleffner syndrome [6]. We chose to simulate three tan-
gential epileptogenic right-hemisphere sources, as shown in
Fig. 2: the first in the temporal lobe, the second in the
occipital lobe, and the third in the Sylvian fissure. This
distributed configuration is typical of multifocal epilepsy,
where each source has an independent time course [6]. For
each of these sources, we use a time signal from a clinical
study to its magnitude over time. That is, we place the
three current dipoles inside our finite element model, and
for each instant in time, we project the activation signals
onto 32 clinically measured scalp electrode positions and
add 2% noise to the signals. The electrode positions are
shown in Fig. 3. Projecting the sources onto the electrodes
requires the solution of a so-called forward problem.

Forward Problem

The EEG forward problem can be stated as follows:
given the positions, orientations and magnitudes of dipole
current sources, as well as the geometry and electrical con-
ductivity of the head volume, Ω, calculate the distribu-
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Fig. 2. Distribution of dipole sources (arrows) visualized with or-
thogonal MRI slices (background).

tion of the electric potential on the surface of the head
(scalp), ΓΩ. Mathematically, this problem can be described
by Poisson’s equation for electrical conduction in the head
[22]:

∇ · (σ∇Φ) =
∑

Is(r), in Ω (1)

and Neumann boundary conditions on the scalp:

σ(∇Φ) · n = 0, on ΓΩ (2)

where σ is a conductivity tensor and Is are the volume
currents density due to current dipoles placed within the
head. The unknown Φ is the electric potential created in
the head by the distribution of current from the dipole
sources. An ideal current dipole source can be described as
two point sources of opposite polarity with infinitely large
current density I0 and infinitely small separation d:

Is(r) = lim
d→0

I0[δ(r− rs −
d

2
)− δ(r− rs +

d

2
)] (3)

and d · I0 = P , the dipole strength.
To solve Poisson’s equation numerically, we began with

the construction of a computational model. The realistic
head geometry was obtained from MRI data, where the
volume was segmented and each tissue material was la-
beled in the underlying voxels [23]. The segmented head
volume was then tetrahedralized via a mesh generator that
preserved the classification when mapping from voxels to
elements [24]. For each tissue classification, we assigned a
conductivity tensor from the literature [25]. A cut-through
of the classified mesh is shown in Fig. 4.

We then used the finite element method (FEM) to com-
pute a solution within the entire volume domain [26]. The

Fig. 3. Triangulated scalp surface with 32 electrodes. The electrodes
have been color-mapped to indicate order: they are colored from
blue to red as the channel number increases.

FEM allows us to capture the anisotropy of conductivity
and accurate boundaries of the volume. The main idea
behind the FEM is to reduce a continuous problem with
infinitely many unknown field values to a finite number of
unknowns by discretizing the solution region into elements.
Then the values of the field at any point can be approxi-
mated by interpolation functions within every element in
terms of the field values at specified points called nodes.
Nodes are located at the element vertices where adjacent
elements are connected. Details of the FEM method can
be found in [26], [27], [28].

In our study, we use tetrahedral elements and linear in-
terpolation functions within each tetrahedron. Our head
model consists of approximately 768, 000 elements and
N = 164, 000 nodes. Once we have a geometric model, we
can assemble the matrix equations (build the matrix A) for
relating field values at different nodes. This can be done
using, for example, a Rayleigh-Ritz or Galerkin method
[28]. Finally, we impose boundary conditions and apply
source currents. These boundary and source conditions
are incorporated within the right hand side (RHS) of the
system (vector b). As a result, when we move sources we
do not have to rebuild the mesh or the matrix A. We note
that for linear interpolation functions, the RHS vector is
not sensitive to the position of a source within an element;
that is, for any position (though not orientation) within a
particular tetrahedron, the contribution to the right hand
side vector is the same. This ambiguity is relevant because
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Fig. 4. Cut-through of the tetrahedral mesh, with elements colored
according to conductivity classification. Green elements corre-
spond to skin, blue to skull, yellow to cerebro-spinal fluid, purple
to gray matter, and light blue to white matter.

it will restrict the accuracy of our inverse solution when we
attempt to recover the exact source positions.

Using the FEM, we obtain the linear system of equations:

AijΦj = bi (4)

where Aij is an N × N stiffness matrix, bi is a source
vector and Φj is the vector of unknown potentials at the
nodes within the head volume. The A matrix is sparse
(containing approximately two million non-zeroes entries),
symmetric, and positive definite.

The solution of this linear system was computed using a
parallel conjugate gradient (CG) method and required ap-
proximately 12 seconds of wall-clock time on a 14 processor
SGI Power Onyx with 195 MHz MIPS R10000 processors.
The solution to a radially-oriented single dipole source for-
ward problem is visualized in Fig. 5. In this image, we
display an equipotential surface in wire frame, indicating
the dipole location with red and blue spheres, cut-through
the initial MRI data with orthogonal planes, and render
the surface potential map of the bioelectric field on the
cropped scalp surface.

In order to simulate time-dependent recordings, we first
computed a forward solution due to each epileptic source,
assuming dipoles of unit-strength. Each source produces
a map of values at the simulated electrode sites. Running
forward simulations for each of several dipoles results in a

Fig. 5. Solution to a single dipole source forward problem. The
underlying model is shown in the MRI planes, the dipole source
is indicated with the red and blue spheres, and the electric field is
visualized by a cropped scalp potential mapping and a wire-frame
equipotential isosurface.

collection of several maps. To extend the single-instant val-
ues at the electrodes into time-dependent signals, we scaled
the values of each map by pre-recorded clinical activation
signals. Finally, we added 2% noise to the projected data
to better simulate physical EEG measurements.

The above method for solving the forward problem is
needed not only to derive the simulated electrode record-
ings, but also as the iterative engine for solving the inverse
source localization problem.

Inverse Problem

The general EEG inverse problem can be stated as fol-
lows: given a set of electric potentials from discrete sites on
the surface of the head and the associated positions of those
measurements, as well as the geometry and conductivity of
the different regions within the head, calculate the loca-
tions and magnitudes of the electric current sources within
the brain.

Mathematically, it is an inverse source problem in terms
of the primary electric current sources within the brain
and can be described by the same Poisson’s equation as
the forward problem, Eq. (1), but with a different set of
boundary conditions on the scalp:

σ(∇Φ) · n = 0, and Φj = φj on ΓΩ (5)

where φj is the electrostatic potential on the surface of the
head known at discrete points (electrode locations) and Is
in Eq. (1) are now unknown current sources.
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The solution to this inverse problem can be formulated
as the non-linear optimization problem of finding a least
squares fit of a set of current dipoles to the observed data
over the entire time series, or minimization with respect to
the model parameters of the following cost function:

||φ− φ̂|| =
∑
k

32∑
j=1

(φj(tk)− φ̂j(tk))2 (6)

where φj(tk) is the value of the measured electric potential

on the jth electrode at time instant tk and φ̂j(tk) is the
result of the forward model computation for a particular
source configuration; the sum extends over all channels and
time frames.

A brute-force implementation of the above method would
require solving the forward problem for every possible con-
figuration of dipoles in order to find the configuration that
minimizes Eq. (6). Each dipole in the model has six pa-
rameters: location coordinates (x, y, z), orientation (θ,
φ) and time-dependent dipole strength P (t). The number
of dipoles is usually determined by iteratively adding one
dipole at a time until a “reasonable” fit to the data has been
found. Even when restricting the location of the dipole to
a lattice of sites, the configuration space is factorially large.
This is a bottleneck of many localization procedures [12],
[29].

Assume now that we could decompose the signals on
the electrodes, such that we know electrode potentials due
to each dipole separately. Then for every set of electrode
potentials we would need to search for only one dipole, thus
dramatically reducing our search space. We will discuss
this useful filtering technique in the next section.

Statistical preprocessing of the data

In EEG experiments, electric potential is measured with
an array of electrodes (typically 32, 64, or 128) positioned
primarily on the top half of the head, as shown in Fig. 3.
The data are typically sampled every millisecond during an
interval of interest.

For a given electrode configuration, the time-dependent
data can be arranged as a matrix, where every column
corresponds to the sampled time frame and every row cor-
responds to a channel (electrode). For example, the data
obtained by 32 electrodes in 180 ms can be sampled in 180
frames and represented as a matrix (32 × 180). Below
we will refer to this matrix as φ(tk), where instead of a
continuous variable t, we have sampled time frames tk.

Before performing source localization, we will preprocess
the EEG activation maps in order to decompose them into
several independent activation maps. The source for each
activation map will then be localized independently. This
is accomplished as follows:
- First, we will process the raw signals, φ(tk), in order
to reduce the dimensionality of the data, and to remove
some of its noise. The projection of the data on the signal
subspace will be referred to as φs(tk).
- The signal subspace, φs(tk), will then be decomposed
into statistically independent terms, φis(tk).
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Fig. 6. Simulated scalp potentials due to three dipole sources mapped
onto 32 channels (electrodes). Channels are numbered left to
right, top to bottom. The first channel is the reference electrode.
These signals are the input data for the ICA algorithm. The
locations of these 32 electrodes are shown in Fig. 3.

- Each independent activation, φis(tk), will be assumed to
be due to a single stationary dipole, which we will then
localize using a parameterized search algorithm.

As outlined above, the first step in processing the raw
EEG data, φ(tk), is to decompose the data into signal
and noise subspaces by applying the Principal Component
Analysis (PCA) method [30] (in the signal processing liter-
ature it is also known as the Karhunen-Loeve transform).
The decomposition is achieved by finding the eigendecom-
position of the data covariance matrix:

R = E{φ(tk)φT (tk)} ≈ 1

n

∑
k

φs(tk) · φs(tk)T (7)

and constructing signal and noise subspaces [15]. The noise
subspace will constitute the singular vectors with singular
values less than a chosen noise threshold.

R = U · Λ ·UT = Us · Λs ·UT
s + Un · Λn ·UT

n (8)

Having constructed the subspaces, we can project the orig-
inal data onto the signal subspace by:

φs(tk) =
√

Λs
(−1)
·UT

s · φ(tk) (9)
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Fig. 7. Singular values of the covariance matrix. It appears that only
the first four singular values contribute to the signal subspace,
with the rest constituting the noise subspace.

where Λs and Us are the signal subspace singular values
and singular vectors.

Though PCA allows us to estimate the number of
dipoles, in the presence of noise it does not necessarily
give an accurate result [15]. In order to separate out any
remaining noise, as well as each statistically independent
term, we will use the recently derived infomax technique,
Independent Component Analysis (ICA). (It is worth not-
ing that PCA not only filters out noise from the data, but
also makes a preliminary step of ICA decomposition by
decorrelating the channels, or removing linear dependence,
i.e., E{si · sj} = 0. ICA then makes the channels indepen-
dent, i.e., E{sni · smj } = 0 for any powers n and m.)

There are several assumptions one needs to make about
the sources in order to apply the ICA algorithm in elec-
troencephalography [19]:
- the sources must be independent (signals come from sta-
tistically independent brain processes);2

- there is no delay in signal propagation from the sources to
the detectors (conducting media without delays at source
frequencies);
- the mixture is linear (Poisson’s equation is linear);
- the number of independent signal sources does not exceed
the number of electrodes (we expect to have fewer strong
sources than our 32 electrodes).

It follows then that since the PCA-processed EEG
recordings φs(tk) are the result of linear combinations of
the source signals s(tk), they can therefore be expressed as:

φs(tk) = M · s(tk), (10)

where M is the so-called “mixing” matrix and each row of
s(tk) is a source’s time activation. What we would like to

2We note that this assumption is thought to be valid for our mul-
tifocal epilepsy source localization problem; however, it may not be
valid for other neural events.
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Fig. 8. ICA activation maps obtained by unmixing the signals from
the signal subspace. We observe that there are only three inde-
pendent patterns, indicating the presence of only three separate
signals in the original data; the fourth component is noise.

find is an “unmixing” matrix W, such that:

W · φs(tk) = W ·M · s(tk) = s(tk), (11)

or, in other words, W = M−1; but we do not know M, the
only data we have is the φs(tk) matrix.

Under the assumption of independent sources, ICA al-
lows us to construct such a W matrix; however, since nei-
ther the matrix nor the sources are known, W can be re-
stored only up to scaling and permutations (i.e., W ·M is
not an identity matrix, but rather is equal to S ·P, where
S is a diagonal scaling matrix and P is a permutation ma-
trix). This problem is often referred to as Blind Source
Separation (BSS) [18], [31], [32], [33].

The ICA process consists of two phases: the learning
phase and the processing phase. During the learning phase,
the ICA algorithm finds a weighting matrix W, which mini-
mizes the mutual information between channels (variables),
i.e., makes output signals that are statistically independent
in the sense that the multivariate probability density func-
tion of the input signals becomes equal to the product of
fu =

∏
i fui

(ui) probability density functions (p.d.f.) of
every independent variable. This is equivalent to maxi-
mizing the entropy of a non-linearly transformed vector
u = g(Wφs):

H(u) = −E{logfu(u)} = −
∫
fu(u)logfu(u)du (12)

where g is some non-linear function.
There exist several different ways to estimate the W ma-

trix. For example, the Bell-Sejnowski infomax algorithm
[18] uses weights that are changed according to the en-
tropy gradient. Below, we use a modification of this rule
as proposed by Amari, Cichocki and Yang [20], which uses
the natural gradient rather than the absolute gradient of
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Fig. 9. The projection of the first three activation maps from Fig. 8
(as well as the original signals from Fig. 7) onto the 32 electrodes.

H(u). This allows us to avoid computing matrix inverses
and to speed up solution convergence:

Wk+1 = Wk + µk · [I + 2g(yk) · yTk ] ·Wk (13)

where the vector y is defined as:

yk = Wk · φs(tk) (14)

and for the nonlinear function g we used:

g(yk) = tanh(yk) (15)

In the above equation µk is a learning rate and I is the
identity matrix [33]. The learning rate decreases during
the iterations and we stop when µk becomes smaller than
a pre-defined tolerance (e.g., 10−6).

The second phase of the ICA algorithm is the actual
source separation. Independent components (activations)
can be computed by applying the unmixing matrix W to
the signal subspace data:

s(tk) = W · φs(tk) (16)

Projection of independent activation maps s(tk) back onto
the electrodes one at a time can be done by:

φi(tk) = Us ·
√

Λ ·W(−1) · si(tk) (17)

where φi(tk) is the set of scalp potentials due to just the ith

source. For si(tk) we zero out all rows but the ith; that is,
all but the ith source are “turned off”. In practice we will
not need the full time sequence φi(tk) in order to localize
source si, but rather simply a single instant of activation.
For this purpose, we set the si terms to be unit sources
(i.e., s = I), resulting in φi row elements which are simply
the corresponding columns of Us ·

√
Λ ·W(−1).

Source localization

For each electrode potential map φi, we can now localize
a single dipole using a search method to minimize Eq. (6).
We have chosen to use the straight-forward downhill sim-
plex search. Since we know we are only searching for one
dipole source which produced each activation map, φi, we
will only need to optimize six degrees of freedom: the po-
sition (x, y, z), orientation (θ, φ) and strength P of a single
dipole. The last three variables can be thought of as com-
ponents (px, py, pz), the dipole strength in the x, y and z
direction.

Since the potential is a linear function of dipole moment,
we can further reduce our search space by using the analytic
optimization from [34], [35]. Specifically, for each location
to be evaluated for the simplex, we separately compute the
solutions due to dipoles oriented in the x, y and z direc-
tions, and solve a 3 × 3 system to determine the optimal
strength and orientation for that position [37]. The mini-
mization cost function now explicitly depends on only the
coordinates of the dipole

R(x, y, z) = ||φi − p̄xφ̂x − p̄yφ̂y − p̄zφ̂z || (18)

To perform non-linear minimization of R(x, y, z), we ap-
plied the multi-start downhill simplex method [21], [36],
as implemented in [38]. In an N-dimensional space, the
simplex is a geometric figure that consists of N+1 fully
interconnected vertices. In our case we are searching a
three-dimensional coordinate space, so the simplex is just
a tetrahedron with four vertices. The downhill simplex
method searches for the minimum of the three-dimensional
function by taking a series of steps, each time moving a
point in the simplex (a dipole) away from where the func-
tion is largest (see Fig. 10).

The single dipole solution to the source localization prob-
lem is unique [39]. This follows from the fundamental
physical properties of the model and can be illustrated by
considering the cost function Eq. (6) over its entire three-
dimensional domain. A computationally efficient method
for evaluating the cost function using lead-field theory is
discussed in [37]. However, despite the uniqueness of the
solution, in the case of linear finite elements the downhill
simplex search method may fail to reach the global mini-
mum. This can happen when the nodes of the simplex (and
its attempted extensions) are all contained within a single
element of the finite element model. In such situations, the
simplex must be restarted several times in order to find the
true global minimum.

After all of the dipoles have been localized, the only
step which remains is to determine their absolute strengths.
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Fig. 10. Visualization of the downhill simplex algorithm converging
to a dipole source. The simplex is indicated by the gray vectors
joined by yellow lines. The true source is indicated in red. The
surface potential map on the scalp is due to the forward solution
of one of the simplex vertices, whereas the potentials at the elec-
trodes (shown as small spheres) are the “measured” EEG values
(potentials due to the true source).

This can be accomplished by solving a small, m× m, linear
minimization problem, where m is the number of dipoles.
For this study, we recovered three dipoles, so we solved a
3×3 system, where the right hand side is formed by the in-
ner products of optimized single dipole solutions and EEG
recordings φ̂.

An Inverse EEG Problem Solving Environment

One of the challenges of solving the inverse EEG source
localization problem is choosing initial configurations for
the downhill simplex solver. A good choice can result in
rapid convergence, whereas a bad choice can cause the al-
gorithm to search somewhat randomly for a very long time
before closing in on the solution. Furthermore, because the
solution space has many plateaus due to the linear finite
element model, it is generally necessary to re-seed the algo-
rithm multiple times in order to find the global minimum.

We have brought the user into the loop by enabling
seed-point selection within the model. The user can seed
specifically within physiologically plausible regions. This
focus enables the algorithm to converge much more quickly,
rather than repeatedly wandering through non-interesting
regions.

To steer our algorithm, we utilized the SCIRun prob-
lem solving environment [40]. SCIRun is a scientific pro-

Fig. 11. The SCIRun problem solving environment. The user can
select physiologically plausible regions of the model in which to
seed the downhill simplex algorithm, thereby steering the algo-
rithm to a more rapid convergence.

gramming environment that allows the interactive con-
struction, debugging, and steering of large-scale scientific
computations. SCIRun can be envisioned as a “compu-
tational workbench,” in which a scientist can design and
modify simulations interactively via a dataflow program-
ming model. As opposed to the typical “off-line” simu-
lation mode (in which the scientist manually sets input
parameters, computes results, visualizes the results via a
separate visualization package, and then starts again at the
beginning), SCIRun “closes the loop” and allows interac-
tive steering of the design, computation, and visualization
phases of a simulation. The images of our algorithm run-
ning within the SCIRun environment are shown in Fig. 10
and Fig. 11.

Numerical Simulations

We prepared the simulated data as described in the pre-
vious sections. The time-dependent course of 180 ms for
all 32 channels is shown in Fig. 6. We also provide a color
mapped plot of the potentials on the surface of the head
for the time step at 160 ms (maximum variance) in Fig. 12.
As can be seen in the latter figure, the distribution of po-
tentials on the scalp can hardly be attributed to a single
dipole, but rather to a configuration of several dipoles. We
perform PCA on the original EEG time-dependent data
and the singular values are shown in Fig.7. Analyzing the
singular values, we can deduce that the signal subspace con-
sists of the four first singular vectors. Working with just
the contribution of these four components Eq. (9), we per-
form the ICA procedure, resulting in the activation maps
shown in Fig. 8. Notice that there are only three differ-
ent activation patterns presented; the fourth component is
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Fig. 12. Scalp surface potential map due to several dipoles, corre-
sponding to time T=160 ms from the signals shown in Fig. 6.

actually just noise.

Projecting the first activation back onto all 32 channels,
we get the signals shown in Fig. 9, which are the potentials
due to the single temporal lobe dipole. Plotting the poten-
tials again for the time step at 160 ms in Fig. 13, one can
recognize the surface potential map as resulting from the
activation of a single dipole source. This is evidenced by
the well-defined foci near the right eye and ear, as well as
the symmetric potential fall-off about the dipole plane.

We can check the accuracy of the ICA decomposition
by comparing the above results to the results of the for-
ward simulation run with the two other dipoles “turned
off”. Because ICA does not preserve scale, we use time-
space correlation coefficients as our metric for comparing
the potentials at the electrodes. The sets of electrode po-
tentials are viewed as vectors in time-space and the cosine
of the “angle” between them is calculated by taking the
dot-product of the two vectors after they have been nor-
malized. Evaluated this way, our three activation projec-
tions restored the original (unmixed) potential distribution
with RMS errors of 2%, 3% and 5%.

We now turn our attention to the last step of the proce-
dure: source localization. For our head model, on average,
the downhill simplex algorithm required only 2 − 3 inter-
active restarts in order to converge to the correct solution,
with an average run of 30 − 50 iterations. This is a sub-
stantial speed-up compared to the batch-mode multi-start
multiple dipole localization methods reported in [36]. The

Fig. 13. Projection of the first ICA component onto the 32 channels
at the time T = 160 ms.

localized temporal lobe dipole was found to be accurate
within 4 mm of the actual source. We repeated this local-
ization procedure for the occipital lobe and Sylvian fissure
dipoles and were able to determine their positions with er-
rors of 5 and 2 mm, respectively.

Conclusions

We have presented an algorithm that reduces the com-
plexity of localizing multiple neural sources by exploiting
the time dependence of the data. We have shown that on
a realistic head model with simulated EEG data, our algo-
rithm is capable of correctly predicting the number of inde-
pendent sources in the model and reconstructing potentials
due to each source separately. These potential maps can
be successfully used by source localization methods to in-
dependently localize sources.

By integrating our algorithm within the SCIRun problem
solving environment, we were able to computationally steer
the multi-start downhill simplex algorithm towards prob-
able regions of activation. Interactive control of the sim-
ulation, coupled with statistical data preprocessing of the
data enabled us to dramatically increase the efficiency and
accuracy of recovering multiple sources from EEG data.
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