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Abstract

Estimating the location and distribution of electric current sources within the brain
from electroencephalographic (EEG) recordings is an ill-posed inverse problem. The
ill-posed nature of the inverse EEG problem is due to the lack of a unique solution
such that different configurations of sources can generate identical external electric
fields.

In this paper we consider a spatio-temporal model, taking advantage of the entire
EEG time series to reduce the extent of the configuration space we must evaluate.
We apply the recently derived infomax algorithm for performing Independent Com-
ponent Analysis (ICA) on the time-dependent EEG data. This algorithm separates
multichannel EEG data into activation maps due to temporally independent station-
ary sources. For every activation map we perform a source localization procedure,
looking only for a single dipole per map, thus dramatically reducing the search com-
plexity. An added benefit of our ICA preprocessing step is that we obtain an a priori
estimation of the number of independent sources producing the measured signal.
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INTRODUCTION

Electroencephalography (EEG) is a technique for the non-invasive characterization of
brain function. Scalp electric potential distributions are a direct consequence of inter-
nal electric currents associated with neurons firing and can be measured at discrete
recording sites on the scalp surface over a period of time.

Estimation of the location and distribution of current sources within the brain from
the potential recording on the scalp (i.e., source localization) requires the solution
of an inverse problem. This problem is ill-posed in the Hadamard sense; specifically,
its solution is not necessarily unique. Physically, this is a consequence of the linear
superposition of the electric field. Specifically, different internal source configurations
can provide identical external electromagnetic fields. Additionally, only a finite num-
ber of measurement of scalp potential are available, increasing the ill-posedness of the
problem.

There exist several different approaches to solving the source localization problem.
Initially, most of these were implemented on a non-realistic spherical model of the
head. Those methods which proved promising were then extended to work on real-
istic geometry. One of the most general methods involves starting from some initial
distributed estimate of the source and then recursively enhancing the strength of
some of the solution elements, while decreasing the strength of the rest of the solu-
tion elements until they become zero. In the end, only a small number of elements
will remain nonzero, yielding a localized solution. This method is implemented, for
example, in the FOCUSS algorithm [Gorodnitsky, 1995].

Another approach incorporates a priori assumptions about sources and their locations
in the model. Electric current dipoles are usually used as sources, provided that the
regions of activations are relatively focused [Nunez, 1981]. Although a single dipole
model is the most widely used model, it has been demonstrated that a multiple dipole
model is required to account for a complex field distribution on the surface of the head
[Supek, 1993].

Finally, there is a group of algorithms that utilize a time course of dipole activations.
Here, rather than fit the assumed dipoles on an instant-by-instant basis, they are fit-
ted by minimizing the least-square error residual over the the entire evoked potential
epoch [Scherg, 1985]. A more advanced approached is developed in the multiple signal
characterization algorithm, MUSIC, and in its extension, RAP-MUSIC. These algo-
rithms use principal component subspace projections to find multiple dipole sources
[Mosher, 1992].

In this paper we propose a new approach to the problem of source localization for
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the inverse EEG problem. Our solution consists of two steps. First, we prepro-
cess the time dependent data, using the Independent Component Analysis (ICA)
[Bell, 1995, Amari, 1996] signal processing technique. The result of the preprocessing
is a set of time-series signals at each electrode, where each time-series corresponds to
an independent source in the model. The number of different maps created by the ICA
is equal to the number of temporally independent, stationary sources in the problem.
To localize each of these independent sources, we solve a separate source localization
problem. Specifically, for each independent component, we choose an instant in time
from the signal and employ a downhill simplex search method [Nedler, 1965] to de-
termine the dipole which best accounts for that particular component’s contribution
of the measured potentials at the electrodes.

In our study we use simulated data obtained by placing dipoles in the brain in posi-
tions corresponding to physiologic phenomena. We chose to incorporate three physio-
logically plausible sources: the first in the temporal lobe (corresponding to an epileptic
focus), the second in the occipital lobe (corresponding to observed visual evoked re-
sponse (ERP) studies), and the third in the frontal lobe (corresponding to language
processing). For each of these sources, we used a time signal from a clinical study to
define their magnitudes over time. That is, we place the three current dipoles inside
our finite element model, and for each instant in time, we project the realistic ERP-
length activation signals onto 32 clinically measured scalp electrode positions. The
electrode positions are shown in Figure 1. Projecting the sources onto the electrodes
requires the solution of a forward problem.

FORWARD PROBLEM

The EEG forward problem can be stated as follows: given position and activations of
dipole current sources, and the geometry and electrical conductivity of the different
regions within the head, calculate the distribution of the electric potential on the sur-
face of the head (scalp). Mathematically, this problem can be described by Poisson’s
equation for electrical conduction in the head [Plonsey, 1995]:

∇ · (σ∇Φ) = −
∑

Is, in Ω (1)

and Newman boundary conditions on the scalp

σ(∇Φ) · n = 0, on ΓΩ, (2)

where σ is a conductivity tensor and Is are the volume currents density due to current
dipoles placed within the head. The unknown Φ is the electric potential created in
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the head by the distribution of current from the dipole sources. To solve Poisson’s
equation numerically, we started with the construction of a computational model.
The realistic head geometry was obtained from MRI data, where the volume was
segmented and each tissue material was labeled in the underlying voxels [Wells, 1994].
The segmented head volume was then tetrahedralized via a mesh generator which
preserved the classification when mapping from voxels to elements [Schmidt, 1995].
For each tissue classification, we assigned a conductivity tensor from the literature
[Foster, 1989]. A cut-through of the classified mesh is shown in Figure 2. We then
used the finite element method (FEM) to compute a solution within the entire volume
domain [Jin, 1993]. The FEM has the advantage that we are able to place current
sources in any location (not only on the mesh nodes as in the finite difference method)
by simply re-tetrahedralizing the surrounding volume with a Watson-style algorithm
[Watson, 1981] after inserting the sources. Our head model consisted of approximately
768,000 elements and N = 164, 000 nodes.

Using FEM we obtain the system of equations

AijΦj = bi, (3)

where Aij is an N × N stiffness matrix, bi is a source vector and Φj is vector of
unknow potentials on every node. The A matrix is sparse (approximately 2,000,000
non-zeroes entries), symmetric and positive definite.

The solution of this linear system was computed using a parallel conjugate gradient
(CG) method and required approximately 12 seconds of wall-clock time on a 14
processor SGI Power Onyx with 195 MHz MIPS R10000 processors. The solution
to a single dipole source forward problem is visualized in Figure 3. In this image,
we display an equipotential surface in wire frame, indicate the dipole location with
red and blue spheres, cut-through the initial MRI data with orthogonal planes, and
render the surface potential map of the bioelectric field on the cropped scalp surface.

In order to obtain time dependent data, we assigned the different time activations
described above to the dipoles and computed the resulting projection on all electrodes
as a function of time. We considered a 32 electrode model for this study.

The solution of the forward problem is needed not only to derive the simulated elec-
trode recordings, but also later on as the iteratively applied engine for solving the
inverse source localization problem.
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INVERSE PROBLEM

The general EEG inverse problem can be stated as follows: given a time dependent set
of electric potentials on the surface of the head and the associated positions of those
measurements, as well as the geometry and conductivity of the different regions within
the head, calculate the locations and magnitudes of the electric current sources within
the brain. Mathematically, it is an inverse source problem in terms of the primary
electric current sources within the brain and can be described by the same Poisson’s
equation as the forward problem (1), but with a different set of boundary conditions
on the scalp:

σ(∇Φ) · n = 0, and Φ = φ on ΓΩ, (4)

where φ is the electrostatic potential on the surface of the head known at discrete
points - electrode locations, and Is in (1) are now unknown current sources.

The solution to this inverse problem can be formulated as finding a least squares fit
of a set of current dipoles to the observed data for a single time step, or minimization
with respect to the model parameters of the following cost function:√√√√ 32∑

j=1

(φj − φ̂j)2/32, (5)

where φi is the value of the measured electric potential on the ith electrode and φ̂i
is the result of the forward model computation for a particular choice of parameters;
the sum extends over all channels.

To employ the above method we must solve the forward problem for every possible
configuration and number of dipoles. Each dipole in the model has 6 parameters:
location coordinates (x, y, z), orientation (θ, φ) and time-dependent dipole strength
P (t). The number of dipoles is usually determined by iteratively adding one dipole at
a time until a “reasonable” fit to the data has been found. Even when restricting the
location of the dipole to the lattice sites, the configuration space is factorially large.
This is a bottleneck of many localization procedures [Supek, 1993, Harrison, 1996].

Assume now that we have somehow managed to filter the signals on the electrodes,
such that we know electrode potentials due to every dipole separately. Then for every
set of electrode potentials we need to search only for one dipole, thus dramatically
reducing the configuration space. We will discuss this useful filtering technique in the
next section.
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STATISTICAL PREPROCESSING OF THE DATA:

INDEPENDENT COMPONENT ANALYSIS

In EEG experiments, electric potential is measured with an array of electrodes (typi-
cally 32/64/128) positioned primarily on the top half of the head, as shown in Figure
1. For studies of the human visual/auditory system (ERP studies), the data are
typically sampled every millisecond during the interval of interest after stimulus pre-
sentation, and are averaged over many trials to remove background noise. For a given
electrode configuration, the time dependent data can be arranged as a matrix, where
every column corresponds to the sampled time frame and every row corresponds to a
channel (electrode). For example, the data obtained by 32 electrodes in 180 ms can
be sampled in 180 frames and represented as a matrix (32 × 180). Below we will refer
to this matrix as x(tk) , where instead of a continuous variable t we have sampled
time frames tk.

Independent component analysis (ICA) is a statistical method for transforming an
observed multidimensional random vector into components that are as independent
from each other as possible [Bell, 1995]. The algorithm achieves this by factoring
the multivariate probability density function of the input signals into the product of
fy =

∏
i fyi

(yi) probability density functions (p.d.f.) of every independent variable.
This factorization involves making the mutual information between variables (chan-
nels) go to zero, i.e., making output signals that are statistically independent. The
ICA process consists of two phases: the learning phase and the processing phase.
During the learning phase, the ICA algorithm finds a matrix W, which minimizes
the Kullback-Leibler divergence between the multivariate probability density and the
marginal distributions (p.d.f) of transformed input vectors x(tk) [Amari, 1996]:

D(W) =

∫
f(y)log

f(y)∏
i fi(yi)

dy, (6)

where

y(tk) =
1

1 + e−W·x(tk)
. (7)

The W matrix is iteratively adjusted to minimize integral (6) by using the data
vectors x(tk):

Wk+1 = Wk + µk · (I + (1− 2 · y(tk) · (Wk · x(tk))
T ) ·Wk, (8)

where µk is a learning rate and I is the identity matrix [Makeig, 1994]. We decrease
the learning rate during the iterations and stop when µk becomes smaller than 10−6,
or in other words, when on consecutive steps the unmixing matrix W does not change
by more than 10−6.
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The second phase of the ICA algorithm is the actual source separation. Independent
components (activations) can be computed by applying the unmixing matrix W to
the initial data:

u(tk) = W · x(tk). (9)

There are several assumptions one needs to make about the sources in order to use
ICA algorithms:

- the sources must be independent (signals come form statistically independent
brain processes);

- there is no delay in signal propagation from the sources to detectors (conducting
media without delays at source frequencies);

- the mixture is linear (Laplace’s equation is linear);

- the number of independent signal sources does not exceed the number of elec-
trodes (we expect to have fewer strong sources than our 32 electrodes).

ICA returns the source activations up to permutation and scale, because it operates
on distribution functions, which do not depend on the relative strength or order
of the signals (this also means that the relative polarities of the obtained signals
are meaningless). After computing the unmixing matrix W, we can separate the
independent source signals using (9). Projection of independent activation maps
back onto the electrode arrays can be done by:

x̂i(tk) = W
(−1)
ki · ui(tk), (10)

where x̂i(tk) is the set of scalp potentials due to just the ith source.

As such, ICA allows us to reconstruct surface potentials that would exist due to
each dipole as if it were the only source. For example, if the output of ICA gives
three strong activation channels, that means we will be looking for only three dipoles.
Projecting each activation map on the scalp electrodes gives us three different maps,
each with a time sequence of values. For each activation map, we choose one value
from the time sequence (fixed point in time), and then use each map to localize one
dipole using the downhill simplex method. The results of numerical experiments are
presented in the next section.

NUMERICAL SIMULATIONS

We prepared the simulated data as described in the previous sections. The time
dependent course of 180 ms for all 32 channels is shown in Figure 4. We also provide
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a color mapped plot of the potentials on the surface of the head for the time step at
160 ms in Figure 7. As can be seen in this figure, the distribution of potentials on
the scalp can hardly be attributed to a single dipole, but rather to a configuration of
several dipoles. We perform the ICA procedure on the given time dependent EEG
data and the resulting activation maps are shown in Figure 5. Notice that there are
only three different activation patterns presented; the rest are either redundant or are
essentially noise. Projecting the first activation on all 32 channels, we get the signals
shown in Figure 6, which are the potentials due to the single temporal lobe dipole.
Plotting the potentials again for the time step at 160 ms in Figure 8, one can easily
recognize the surface potential map as resulting from the activation a single dipole
source.

We can now check the accuracy of the ICA decomposition by comparing it to the
results of the forward problem simulation run with two of the three dipoles “turned
off”. Because ICA does not preserve scale, we use correlation coefficients as our
metric for comparing the potentials at the electrodes. The sets of electrode potentials
are viewed as vectors in N-space (in our case of 180 time steps, N = 180) and the
cosine of the “angle” between them is calculated by taking the dot-product of the two
vectors after they’ve been normalized. For the jth channel, the correlation coefficient
will be:

CCj =

∑
k(xj(tk) · x̂j(tk))
|xj| · |x̂j|

(11)

A value of CCj = 1 indicates that the simulated and ICA recovered time series at that
electrode are identical up to a scaling factor. The ICA error can thus be cumulatively
estimated over all electrodes over the entire time sequence, by evaluating the root-
mean-square (RMS) difference of CCj from 1 over all channels:√√√√ 32∑

j=1

(CCj − 1)2/32 (12)

Evaluated with the above formula, our three activation projections restored the orig-
inal (unmixed) potential distribution with RMS errors of 3%, 4% and 10%, respec-
tively.

We then applied the downhill method [Nedler, 1965] to find the minimum of the mul-
tidimensional cost function. In an N dimensional space, the simplex is a geometrical
figure that consists of N+1 interconnected vertices (for example, in our case we have
a 6 dipole parameters, so the simplex has 7 vertices). The downhill simplex method
minimizes a function by taking a series of steps, each time moving the point in the
simplex away from where the function is largest. Occasionally the method converges
to non-physical solutions and must be restarted [Huang, 1996].
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The localized temporal lobe dipole was found to be accurate within 7 mm of the
actual source. We repeated this localization procedure for the occipital and frontal
lobe dipoles and were able to determine their positions with errors of 9 and 16 mm,
respectively.

CONCLUSIONS

We have presented an algorithm that reduces the complexity of localizing multiple
neural sources by exploiting the time-dependence of the data. We have shown that
on a realistic head model with simulated EEG data, our algorithm is capable of cor-
rectly predicting the number of independent sources in the model and reconstructing
potentials due to each source separately. These potential maps can be successfully
used by source localization methods to independently localize separate sources.
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Figure 1: TRIANGULATED SCALP SURFACE WITH 32 ELECTRODES. THE
ELECTRODES HAVE BEEN COLOR-MAPPED TO INDICATE ORDER: THEY
ARE COLORED FROM BLUE TO RED AS THE CHANNEL NUMBER IN-
CREASES.
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Figure 2: CUT-THROUGH OF THE TETRAHEDRAL MESH, WITH ELEMENTS
COLORED ACCORDING TO CONDUCTIVITY CLASSIFICATION. GREEN EL-
EMENTS CORRESPOND TO SKIN, BLUE TO SKULL, YELLOW TO CEREBRO-
SPINAL FLUID, PURPLE TO GRAY MATTER, AND BLUE TO WHITE MAT-
TER.
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Figure 3: SOLUTION TO A SINGLE DIPOLE SOURCE FORWARD PROBLEM.
THE UNDERLYING MODEL IS SHOWN IN THE MRI PLANES, THE DIPOLE
SOURCE IS INDICATED WITH THE RED AND BLUE SPHERES, AND THE
ELECTRIC FIELD IS VISUALIZED BY A CROPPED SCALP POTENTIAL MAP-
PING AND A WIRE-FRAME EQUIPOTENTIAL ISOSURFACE.
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Figure 4: SIMULATED SCALP POTENTIAL DUE TO THREE DIPOLE
SOURCES MAPPED ONTO 32 CHANNELS (ELECTRODES). CHANNELS ARE
NUMBERED LEFT TO RIGHT, TOP TO BOTTOM. THE FIRST CHANNEL IS
THE REFERENCE ELECTRODE. THESE SIGNALS ARE THE INPUT DATA
FOR THE ICA ALGORITHM. THE LOCATIONS OF THESE 32 ELECTRODES
ARE SHOWN IN FIGURE 1.
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Figure 5: ICA ACTIVATION MAPS OBTAINED BY UNMIXING THE INPUT
SIGNALS. WE OBSERVE THAT THERE ARE ONLY THREE INDEPENDENT
PATTERNS, INDICATING THE PRESENCE OF ONLY THREE SEPARATE SIG-
NALS IN THE ORIGINAL DATA.
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Figure 6: THE PROJECTION OF THE FIRST ACTIVATION MAP FROM FIG-
URE 5 ONTO THE 32 ELECTRODES.
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Figure 7: SCALP SURFACE POTENTIAL MAP DUE TO SEVERAL DIPOLES,
CORRESPONDING TO TIME T=160MS FROM THE SIGNALS SHOWN IN FIG-
URE 4.
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Figure 8: PROJECTION OF THE FIRST ICA COMPONENT ONTO THE 32
CHANNELS AT TIME T=160MS.
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