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The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline
for delineating the association between multiple diffusion properties along major white matter fiber bundles
with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the
variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS
integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient
functions in terms of arc length to characterize the varying associations between fiber bundle diffusion
properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions,
(iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle
diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous
confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to
evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white
matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a
clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain
development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and
genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing
approaches are that they are capable of modeling the structured inter-subject variability, testing the joint
effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation
and reduces to the functional analysis method for the single measure.
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Introduction

Diffusion tensor imaging (DTI), which can track the effective
diffusion of water in the human brain in vivo, has been widely used to
map the structure and orientation of the white matter fiber tracts of
the brain (Basser et al., 1994a,b). In DTI, the degree of diffusivity and
the directional dependence of water diffusion in each voxel can be
quantified by a 3×3 matrix, called a diffusion tensor (DT), and its
tensor-derived quantities. These quantities are called diffusion
properties. They include the three eigenvalue -eigenvector pairs of
DT and other related parameters, such as fractional anistropy (FA)
(Pierpaoli and Basser, 1996; Hasan et al., 2001; Hasan and Narayana,
2003; Zhu et al., 2006). A wealth of neuroimaging studies have been
conducted to use these tensor-derived quantities as a marker for
white matter tract maturation and integrity in order to better
understand normal brain development and the neural bases of
neuropsychiatric and neuro-degenerative disorders (Moseley, 2002;
Mukherjee and McKinstry, 2006; Cascio et al., 2007; Rollins, 2007).

In the current literature, there are three major approaches to the
group analysis of diffusion imaging data: region-of-interest (ROI)
analysis, voxel based analysis, and fiber tract based analysis (Smith
et al., 2006; O'Donnell et al., 2009; Snook et al., 2007). The ROI analysis
used in some neuroimaging studies (Bonekam et al., 2008; Gilmore
et al., 2008) primarily averages diffusion properties in some manually
drawn ROIs for each subject and then creates a single statistic per ROI
(Snook et al., 2007). The main drawbacks of ROI analysis are the
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difficulty in identifying meaningful ROIs, particularly the long curved
structures common in fiber tracts; the instability of statistical results
obtained from ROI analysis, and the partial volume effect in relatively
large ROIs (Goodlett et al., 2009; Zhu et al., 2010c). A stringent
assumption of the ROI analysis is that diffusion properties in all voxels of
the sameROI are essentially homogeneous, which is largely false for DTI.

Voxel-based analysis is used more commonly than ROI analysis in
neuroimaging studies (Chen et al., 2009; Focke et al., 2008; Camara
et al., 2007; Snook et al., 2005). It usually involves fitting a statistical
model to the smoothed and registered diffusion property imaging data
from multiple subjects at each voxel to generate a parametric map of
test statistics (or p-values). Subsequently, a multiple comparisons
procedure such as random field theory is applied to correct for multiple
comparisons across themany voxels of the imaging volume (Ashburner
and Friston, 2000; Wager et al., 2005; Worsley et al., 2004). The major
drawbacks of voxel based analysis include poor alignment quality and
the arbitrary choice of smoothing extent (Hecke et al., 2009; Ashburner
and Friston, 2000; Smith et al., 2006; Jones et al., 2005). Particularly,
extensive simulation results have shown that the final results of voxel-
based analysis can strongly depend on the amount of smoothing in the
smoothed diffusion imaging data (Jones et al., 2005).

With the drawbacks of the ROI and voxel based analyses, there is a
growing interest in the DTI literature on developing fiber tract based
analysis of diffusion properties (Smith et al., 2006; O'Donnell et al., 2009;
Yushkevich et al., 2008; Goodlett et al., 2009; Zhu et al., 2010c). For
instance, a tract-based spatial statistics framework was developed to
construct local diffusion properties along the white matter skeleton and
then perform pointwise hypothesis tests on the skeleton (Smith et al.,
2006). A model-based framework was developed for statistically
analyzing diffusion properties on the medial manifolds of fiber tract
followed by testing pointwise hypotheses on the medial manifolds
(Yushkevich et al., 2008). These two methods essentially ignore the
functional nature of diffusion properties in terms of arc length along the
white matter skeleton and the medial manifolds, and thus they suffer
from low statistical power in detecting interesting features and exploring
variability in functional data. Statistically, diffusion properties along fiber
bundles are functional data of position along the tract. Formal analysis of
these fiber bundle diffusion properties requires recently developed
advanced functional data analysis methods (Li andHsing, 2010; Yao and
Lee, 2006; Hall et al., 2006; Ramsay and Silverman, 2005, 2002).

There are several developments on the use of functional data
analysis methods for the statistical analysis of diffusion properties
along fiber tracts. Goodlett and his coauthors used the functional
principal component analysis coupled with the Hotelling T2 statistic to
compare a univariate diffusion property, such as fractional anisotropy,
across two (or more) populations for a single hypothesis test per tract
(Goodlett et al., 2009; Ramsay and Silverman, 2005). Their method is
“smoothing first, then estimation.” This method is limited to a
univariate diffusion property and cannot control for other continuous
covariates of interest, such as age. The constraint principal component
analysis method was used by Gouttard and his coauthors to fit the age
related changes of diffusion properties along fiber tracts (Gouttard et
al., 2009). Threemajor limitations of theirmethod are that it only fits a
univariate diffusion property; it cannot control for multiple covariates
of interest, such as age and gender; and it cannot test a hypothesis of
interest, such as age effect. Zhu and his coauthors presented a
functional regression analysis of DTI tract statistics, called FRATS, for
the analysis of multiple diffusion properties along fiber bundles with a
set of covariates of interest (Zhu et al., 2010c). FRATS is also
“smoothing first, then estimation,” and is executed in two steps
(Zhu et al., 2010c; Zhang and Chen, 2007). The first step is to smooth
multiple diffusion properties along individual fiber bundles using the
local polynomial kernel method. The second step is to fit a functional
linear model with varying coefficient functions to directly character-
ize the association between the smoothed fiber bundle diffusion
properties and a set of covariates, and then to test the hypothesis of
interest. However, their method does not include methods for
delineating the structure of the variability in fiber bundle diffusion
properties or for quantifying the uncertainty in the estimated
coefficient functions. Zhu and his coauthors developed a multivariate
varying coefficient model, but their statistical methods only include
estimation methods and statistics for testing hypothesis of interest
(Zhu et al., 2010a). Greven and her coauthors also developed a
univariate varying coefficient model for longitudinal functional data,
but they have not developed any formal statistics for testing
hypotheses and constructing the confidence band of any varying
coefficient function in a frequentist framework (Greven et al., 2010).

This paper will present a functional analysis of the diffusion tensor
tract statistics (FADTTS) pipeline for delineating the structure of the
variability of multiple diffusion properties along major white matter
fiber bundles and their association with a set of covariates. Diffusion
properties, such as fractional anisotropy (FA) and mean diffusivity
(MD), along fiber tracts are modeled as functions of the position along
the tracts. Compared with the existing literature (Goodlett et al.,
2009; Zhu et al., 2010c, 2010a; Greven et al., 2010), there are five
methodological contributions in this paper. First, a multivariate
varying coefficient model is developed to characterize the association
between fiber bundle diffusion properties and a set of covariates.
Second, a weighted least squares estimation is proposed to directly
estimate the varying coefficient functions without using the “smooth-
ing first, then estimation” strategy. Third, a functional principal
component analysis is employed to delineate the structure of the
variability in fiber bundle diffusion properties. Fourth, under the
multivariate varying coefficient model, a global test statistic is
proposed to test hypotheses of interest and a resampling method is
developed for approximating the p-value of the global test statistic.
Fifth, a simultaneous confidence band is built to quantify the
uncertainty in the estimated coefficient functions and a resampling
method is proposed to approximate the critical point. The advantages
of FADTTS are that they are capable of modeling the structured inter-
subject variability by a functional principal component analysis
method, testing the joint effects by a global test statistic and local
test statistics, and constructing simultaneous confidence bands of the
interested effects through a resampling method. However, FADTTS is
not crucial for estimation and reduces to the functional analysis
method for the single measure (Zellner, 1962).
Methodologies

The focus of this paper is to present a functional analysis pipeline,
called FADTTS, with five powerful statistical tools for delineating the
structure of the variability of multiple diffusion properties along
major white matter fiber bundles and their association with a set of
covariates of interest, such as age. Mathematically, we have rigorously
derived the asymptotic properties of FADTTS, whose detailed
assumptions and proofs are available from the first author upon
request (Zhu et al., 2010b). A schematic overview of FADTTS is given
in Fig. 1. The code for FADTTSwaswritten inMatlab, which alongwith
its documentation is freely accessible from our website “http://www.
nitrc.org/projects/fadtts”. To make it easily accessible, we developed a
Graphical User Interface (GUI) to pack the code, also freely
downloadable from the same website.

To compare diffusion properties in populations of DTIs, we use DTI
atlas building followed by atlas fiber tractography and fiber
parametrization as described in Goodlett et al. (2009) to extract DTI
fibers and establish DTI fiber correspondence across all DTI datasets
from different subjects. Since this method has been described in detail
(Goodlett et al., 2009; Zhu et al., 2010c), we do not include a
description here for the sake of simplicity. We briefly describe each
component of FADTTS in the following subsections, and their
technical details can be found in Zhu et al. (2010b).

mailto:htzhu@email.unc.edu
mailto:htzhu@email.unc.edu


Fig. 1. A schematic overview of FADTTS: a multivariate varying coefficient model for the diffusion properties of a tract, a weighted least squares method for estimating the
coefficient functions, a functional principal component analysis model for analyzing the covariance structure, a hypothesis test for coefficient functions using both local and
global test statistics, a resampling method for estimating the p-value of the global test statistics, and a method for constructing the confidence bands of the coefficient functions
based on a resampling method.
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Multivariate varying coefficient model

We develop a multivariate varying coefficient model to model J
diffusion quantities (e.g., FA) measured along fiber bundles with a set
of covariates of interest. The J diffusion properties along fiber tracts
are treated as functional data, which are functions of the position of
the tracts and have no connectionwith functional magnetic resonance
imaging data. Let s∈ [0,L] be the arc length of any point on a specific
fiber bundle relative to a fixed end point of the fiber bundle, where L is
the longest arc length on the fiber bundle. For the i-th subject, we
consider a J×1 vector of diffusion properties, denoted by yi(sm)=(yi, 1
(sm),⋯,yi, J(sm))T, and its associated arc length sm for the m-th location
grid point on the fiber bundle for i=1,⋯,n and m=1,⋯,M, where n
and M denote the numbers of subjects and grid points, respectively.
We consider a multivariate varying coefficient model (Fan and Zhang,
1999; Wu and Chiang, 2000; Fan et al., 2003; Fan and Zhang, 2008;
Wang et al., 2008; Ferguson et al., 2009), which assumes that for i=1,
⋯,n and j=1,⋯, J,

yi;j sð Þ = xT
i Bj sð Þ + ηi;j sð Þ + εi;j sð Þ; ð1Þ

where Bj(s)=(βj1(s),⋯,βjp(s))T is a p×1 vector of coefficient functions
of arc length s, xi is a p×1 vector of covariates of interest with xi, 1=1,
and �i, j(s) are measurement errors. Moreover, ηi, j(s) characterizes
both individual curve variations from xiTBj(s) and the correlation
between yi, j(s) and yi, j(t) for different s and t. That is, ηi, j(s) measures
both subject-specific variability and location-specific variability. In
addition, βj1(s) describes the average curve ( i.e., the typical curve), of
the j-th diffusion property.
It is also assumed that ηi(s)=(ηi, 1(s),⋯,ηi, J(s))T and �i(s)=(�i, 1(s),
⋯, �i, J(s))T are mutually independent, and ηi(s) and �i(s) are, respec-
tively, independent and identical copies of SP(0,Ση) and SP(0,Σ�),
where SP(μ,Σ) denotes a vector with elements being stochastic
processes with mean function μ(s) and covariance function Σ(s, t) for
any s, t∈ [0,L]. Moreover, for any 1≤u,v≤M, the covariance structure
of yi(s), denoted by Σy(s, t)=(Σy,uv(s, t)), is given by

Σy;uv s; tð Þ = Cov yi;u sð Þ; yi;v tð Þ
� �

= Ση;uv s; tð Þ + Σ�;uv s; tð Þ1 s = tð Þ; ð2Þ

where Ση,uv(s, t) and Σ�,uv(s, t) are the (u,v)-th component of M×M
matrices Ση(s, t) and Σ�(s, t), respectively.

Since the design matrix is the same for all diffusion properties, the
estimators of Bj(s) for j=1,2,⋯, J from Eq. (1) obtained by pooling all
diffusion properties together are identical to those obtained by fitting
diffusion properties individually (Zellner, 1962). However, the
covariance structure of yi(s) plays an essential role in the inference
procedure (e.g. hypothesis test and confidence bands), which can only
be estimated by pooling all diffusion properties together using model
(1). Moreover, in practice, it is also interesting to compare different
tensor-derived statistics along the tract, and thus a functional analysis
method for multiple outcomes is necessary and useful. For instance, in
real data analysis, one may be interested in testing which eigenvalue
grows faster (Zhu et al., 2010c).

As an illustration, in our clinical study on early brain development,
we are interested in studying the evolution of the three eigenvalues Lj,
j=1,2,3, of diffusion tensor ðL1≥L2≥L3Þ along two selected fiber
tracts in 128 healthy pediatric subjects (Figs. 4(a) and 8(a)). We
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consider a multivariate varying coefficient model of three eigenvalues
along a specific tract as follows:

Li;1 sð Þ = β11 sð Þ + β12 sð Þ × Gi + β13 sð Þ × Gagei + ηi;1 sð Þ + �i;1 sð Þ;

Li;2 sð Þ = β21 sð Þ + β22 sð Þ × Gi + β23 sð Þ × Gagei + ηi;2 sð Þ + �i;2 sð Þ; ð3Þ

Li;3 sð Þ = β31 sð Þ + β32 sð Þ × Gi + β33 sð Þ × Gagei + ηi;3 sð Þ + �i;3 sð Þ;

where Li;j sð Þ equals Lj at the location s for j=1,2,3 and i=1,⋯,128 and
Gi and Gagei, respectively, denote the gender and the gestational
age at the scan time of the i-th infant. In this case, J=3, Bj(s)=(βj1(s),
βj2(s),βj3(s))T, and xi = 1;Gi;Gageið ÞT .

Weighted least squares estimation

To estimate the coefficient functions in B(s)=[B1(s),B2(s),⋯,BJ(s)],
we employ a weighted least squares (WLS) method based on a local
polynomial kernel (LPK) smoothing technique (Fan and Gijbels, 1996;
Wand and Jones, 1995; Wu and Zhang, 2006; Ramsay and Silverman,
2005; Welsh and Yee, 2006; Zhang and Chen, 2007). Specifically,
using Taylor's expansion, we can expand Bj(sm) at s to obtain

Bj smð Þ = Bj sð Þ + Ḃj sð Þ sm−sð Þ; ð4Þ

where Ḃj sð Þ = β̇j1 sð Þ; ⋯; β̇jp sð Þ
� �T

and β̇jl sð Þ = dβjl sð Þ= ds for l=1,⋯,p.
Let K(⋅) be a kernel function, such as the Gaussian and uniform kernels
(Fan and Gijbels, 1996;Wand and Jones, 1995). For a fixed bandwidth
h and each j, the WLS estimator of Bj(s) is obtained by minimizing an
objective function

∑
n

i=1
∑
M

m=1
yi;j smð Þ−xT

i Aj h; sm−sð Þz h; sm−sð Þ
h i2

K sm−sð Þ= hð Þ= h; ð5Þ

where Aj h; sm−sð Þ = Bj sð Þ;hḂj sð Þ sm−sð Þ
h i

and z(h,sm−s)=(1,(sm−
s)/h)T. The WLS method differs from the standard least squares
method by only incorporating observations measured at those grid
points near each point s.

To select an optimal bandwidth, we use the leave-one-out
generalized cross-validation score method for simplicity and
computational efficiency (Zhang and Chen, 2007; Zhu et al.,
2010b). Other bandwidth selection methods, such as Bayesian
evidence optimization, can be implemented directly as well. In
practice, we standardize all covariates and diffusion properties to
have mean zero and standard deviation one and then choose a
common bandwidth for all covariates. This greatly increases
computational efficiency in bandwidth selection. Moreover, the
estimation results are fairly robust to the bandwidth selection unless
an extremely small or large bandwidth is chosen. Based on our
experience in simulation studies, we recommend searching around
max{30,M/2} log-spaced points from 1/M to 1/8 of the arc length
range. For each diffusion property, we select an optimal bandwidth
and compute the corresponding estimator of Bj(s), denoted by B̂j sð Þ,
at the optimal bandwidth.

Functional principal component analysis

To simultaneously construct all individual functions ηi, j(s), we
also employ the PLK smoothing technique (Fan and Gijbels, 1996;
Wand and Jones, 1995; Wu and Zhang, 2006; Ramsay and Silverman,
2005; Welsh and Yee, 2006; Zhang and Chen, 2007). Specifically,
using Taylor's expansion, we can expand ηi, j(sm) at s to obtain
ηi;j smð Þ = ηi;j sð Þ + η̇i;j sð Þ sm−sð Þ: We develop an algorithm based on
WLS with LPK to estimate ηi, j(s) as follows. For each j and a fixed
bandwidth h, we estimate ηi, j(s) byminimizing an objective function

∑
M

m=1
yi;j smð Þ−xT

i B̂j smð Þ−Di;j h; sm−sð Þz h; sm−sð Þ
h i2

K sm−sð Þ= hð Þ= h;

ð6Þ

where Di;j h; sm−sð Þ = ηi;j sð Þ; h η̇i;j sð Þ sm−sð Þ
h i

.
Pooling all the data from n subjects for each j, the optimal

bandwidth is selected by using the leave-one-out generalized cross-
validation score method. Based on the optimal bandwidth, we can
estimate ηi, j(s) and ηi(s), denoted by η̂i;j sð Þ and η̂i sð Þ, respectively, for
all i and j. We then use their empirical mean and covariance to
estimate η(s) and Ση(s, t). The estimator of Σ�(s,s) is a weighted mean
of the empirical covariances of �̂i smð Þ = yi smð Þ−B̂ smð ÞTxi−η̂i smð Þ by a
kernel approach with the optimal bandwidth selected by the cross
validation method.

Functional principal component analysis (FPCA) attempts to find
the dominant modes of variation around regression functions, and is
thus a key technique in functional data analysis (Li and Hsing, 2010;
Yao and Lee, 2006; Hall et al., 2006; Ramsay and Silverman, 2005;
Ramsay and Silverman, 2002). We calculate the spectral decomposi-
tion of Σ̂η;jj s; tð Þ for each j as follows:

Σ̂η;jj s; tð Þ = ∑
∞

l=1
λ̂j;lψ̂j;l sð Þψ̂j;l tð Þ; ð7Þ

where λ̂j;1≥ λ̂j;2≥⋯≥0 are estimated eigenvalues and the ψ̂j;l tð Þ's are
the corresponding estimated principal components. For finite M, we
essentially have the regular principal component analysis (PCA). That
is, we have a finite number of estimated non-zero eigenvalues, which
are the eigenvalues of Σ̂η;jj su; svð Þ

� �
for u,v=1,⋯,M, and the estimated

principal components ψ̂j;l s1ð Þ; ⋯; ψ̂j;l sMð Þ
h i

are the l-th eigenfunction of

Σ̂η;jj su; svð Þ
� �

. In practice, we use the proportion of variance explained
greater than 80% to truncate eigenvalues.

Hypothesis test

In neuroimaging studies, most scientific questions require the
comparison of fiber bundle diffusion properties along fiber bundles
across two (or more) diagnostic groups and the assessment of the
development of fiber bundle diffusion properties across age. Such
questions can often be formulated as linear hypotheses of B(s) as follows:

H0 : C vec B sð Þð Þ = b0 sð Þ for all s vs: H1 : C vec B sð Þð Þ≠b0 sð Þ; ð8Þ

where C is a r× Jp matrix of full row rank and b0(s) is a given r×1
vector of functions.

As an illustration, in model (3), we are interested in comparing the
evolution speeds of the three eigenvalues of the DTs along selected
fiber tracts in 128 healthy pediatric subjects in our clinical study on
early brain development. Statistically, for model (3), the comparison
can be formulated as follows:

H0 : β13 sð Þ = β23 sð Þ = β33 sð Þ for all s vs:
H1 : jβ13 sð Þ−β23 sð Þ j + jβ23 sð Þ−β33 sð Þ j≠0:

In this case, we have

C = 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 1 0 0 −1

� �
and b0 sð Þ≡ 0

0

� �
for all s:

The use of multiple diffusion properties in model (3) allows us to
compare different functions in B(s) associated with different diffusion
properties.
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We propose both local and global test statistics. The local test
statistic can identify the exact location of a significant grid point on a
specific tract. At a given grid point sm on a specific tract, we test the
local null hypothesis H0(sm) :C vec(B(sm))=b0(sm) against H1(sm) :
C vec(B(sm))≠b0(sm). The local test statistic Sn(sm) is defined by

Sn smð Þ = d smð ÞT C Σ̂η sm; smð Þ⊗Ω̂
−1
X

� �
CT

h i−1
d smð Þ; ð9Þ

where Ω̂
−1

X ∑n
i = 1x

⊗2
i , d sð Þ = C vec B̂ sð Þ−bias B̂ sð ÞÞÞ−b0 sð Þ

��
and ⊗

denote the Kronecker product. Following Fan and Zhang (2000), a
smaller bandwidth leads to a small value of bias B̂ sð ÞÞ

�
; thus, we

drop bias B̂ sð Þ
� �

from now on. We test the null hypothesis H0 :

C vec B sð Þð Þ = b0 sð Þ for all s using a global test statistic Sn defined by

Sn = ∫L0
0 d sð ÞT C Σ̂η s; sð Þ⊗ Ω̂

−1
X

� �
CT

h i−1
d sð Þds: ð10Þ

In order to use Sn as a test statistic, we have already shown that Sn
has a desirable asymptotic distribution, a weighted χ2 distribution. To
efficiently approximate the p-value of Sn, we use a wild bootstrap
method from Zhu et al. (2010b).

Confidence bands

For a given significance level α, we construct a simultaneous
confidence band for each βjl(s) such that

P β̂
L;α
jl sð Þ b βjl sð Þ b β̂

U;α
jl sð Þ for all s∈ 0; L½ �

� �
= 1−α; ð11Þ

where β̂
L;α

jl sð Þ and β̂
U;α

jl sð Þ are the lower and upper limits of the
confidence band. Since sups∈ 0;L½ � j

ffiffiffi
n

p
β̂jl sð Þ−βjl sð Þ
h i

j converges in
distribution to sups∈ [0, L]|Gjl(s)|, where Gjl(⋅) is a centered Gaussian
process, we define the critical point Cjl(α) such that P(sups∈ [0, L]|Gjl

(s)|≤Cjl(α))=1−α. Therefore, a 1−α simultaneous confidence
band for βjl(s) is given as follows:

β̂jl sð Þ−Cjl αð Þffiffiffi
n

p ; β̂jl sð Þ + Cjl αð Þffiffiffi
n

p
� �

: ð12Þ

We develop an efficient resampling method to approximate Cjl(α)
as in Zhu et al. (2007a) and Kosorok (2003).

Simulation studies and a real example

We will use two sets of Monte Carlo simulations and a real
example to evaluate the finite-sample performance of FADTTS. All
computations for these numerical examples were done in matlab on
an IBM ThinkCentre M50 workstation. The computation time for
FADTTS is relatively efficient. For example, for our real example with
n=128, J=5, M=75 and p=3, the FADTTS procedure including 500
wild bootstrap samples took an average CPU time of about 13 min.
The computational time for FADTTS can be further reduced by using
other computer languages, such as C++.

Simulation studies

We conducted two sets of Monte Carlo simulations to evaluate the
Types I and II error rates of the global test statistic Sn and the coverage
probabilities of the simultaneous confidence bands of the functional
coefficients B(s), respectively. In the first set of simulations, we evaluated
theTypes I and II error ratesby simulating FAandMDmeasures (Figs. 8(b)
and (c)) along the right internal capsule tract according to

FAi smð Þ;MDi smð Þð ÞT = xT
i B1 smð Þ;xT

i B2 smð Þ
� �T

+ ηi smð Þ + �i smð Þ;
xT
i B1 sð Þ = β11 sð Þ + β12 sð Þ × Gi + β13 sð Þ × Gagei;

xT
i B2 sð Þ = β21 sð Þ + β22 sð Þ × Gi + β23 sð Þ × Gagei; ð13Þ

where Gi and Gagei, respectively, denote gender and the gestational
age at the scan time of the i-th infant; ηi sð Þ = ηi1 sð Þ;ηi2 sð Þð ÞT is a
Gaussian process with zero mean and covariance matrix Ση(s, t); and
�i sð Þ = �i1 sð Þ; �i2 sð Þð ÞT is a Gaussian random vector with zero mean
and covariance matrix Σ�(s, t)1(s= t). We used the FA and MD
measures along the right internal capsule tract from all the 128
infants in our clinical data to estimate B̂ sð Þ of B(s), η̂ sð Þ of η(s), and
�̂ sð Þ of �(s) via �̂ sð Þ = FA sð Þ;MD sð Þð ÞT−B̂ sð ÞTx−η̂ sð Þ. We fixed all the
parameters at their values obtained from our clinical data, except
that we assumed β13 sð Þ;β23 sð Þð Þ = c β̂13 sð Þ; β̂23 sð Þ

� �
, where c is a

scalar specified below and β̂13 sð Þ; β̂23 sð Þ
� �

were estimators obtained
from our clinical data. To mimic imaging data, we used a simulation
method as follows. We generated random samples τi(g) and τi(sm)(g)

from a N(0,1) generator for i=1,⋯,n and m=1,⋯,M and then
constructed

FAi smð Þ gð Þ = β̂11 smð Þ + β̂12 smð Þ × Gi + cβ̂13 smð Þ × Gagei

+ τ gð Þ
i η̂i1 smð Þ + τi smð Þ gð Þ

�̂i1 smð Þ;
MDi smð Þ gð Þ = β̂21 smð Þ + β̂22 smð Þ × Gi + cβ̂23 smð Þ × Gagei

+ τ gð Þ
i η̂i2 smð Þ + τi smð Þ gð Þ

�̂i2 smð Þ:

Our tests were based on the simulated values of FA and MD
measures FAi smð Þ gð Þ and MDi smð Þ gð Þ for i=1,⋯,n and m=1,⋯,M.

As already mentioned, in neuroimaging studies, a lot of scientific
questions require assessment of the development of fiber bundle
diffusion properties across age. In this simulation study, we
formulated questions as the hypotheses test H0 :β13(s)=β23(s)=0
for all s along the right internal capsule tract against H1 :β13

(s)≠0 or β23(s)≠0 for at least one s on the tract. We first assumed
c=0 to assess the Type I error rates for the global test statistic Sn, and
then we assumed c=0.2,0.4,0.6, and 0.8 to examine the Type II error
rates for Sn at different effect sizes. In both cases,

C = 0 0 1 0 0 0
0 0 0 0 0 1

� �
and b0 sð Þ≡ 0

0

� �
for all s:

To evaluate the Types I and II error rates at different sample sizes,
we let n=128 and 64. For n=128, the values of gender and
gestational age were set the same as the 128 infants in our clinical
study. For n=64, we randomly chose 32 males and 32 females from
the 128 infants and used their values for gender and gestational age to
simulate the values of FA and MD along the right internal capsule
tract. Note that the number of grid points on the right internal capsule
equals M=75 for both cases.

We applied the FADTTS procedure to the simulated values for
FA and MD. Particularly, we approximated the p-value of Sn using
the wild bootstrap method. For each simulation, the significance
levels were set at α=0.05 and 0.01, and 500 replications were
used to estimate the rejection rates. For a fixed α, if the Type I
rejection rate is smaller than α, then the test is conservative,
whereas if the Type I rejection rate is greater than α, then the test
is anticonservative, or liberal. The Monte Carlo error rate isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1−αð Þ=Np

with N=500.
As shown in Table 1, the rejection rates for Sn based on the

resamplingmethod are relatively accurate for all sample sizes (n=64,
or 128) and all effect sizes (c=0, 0.2,0.4,0.6, or 0.8) at both
significance levels (α=0.01 or 0.05) (Figs. 2(a) and (b): n=64 and
Figs. 2(c) and (d): n=128). The statistical power for rejecting the null
hypothesis increases with the sample size and the effect size, which is
consistent with our expectation. In addition, to show that FADTTS



Table 1
Simulation study: the Type I and Type II error rates of Sn under GLM and FADTTS.

Sample size n=64 Sample size n=128

α=0.01 α=0.05 α=0.01 α=0.05

GLM FADTTS GLM FADTTS GLM FADTTS GLM FADTTS

c=0.000 0.000 0.005 0.040 0.045 0.005 0.005 0.045 0.060
c=0.200 0.005 0.030 0.065 0.115 0.015 0.045 0.075 0.165
c=0.400 0.020 0.085 0.110 0.275 0.065 0.150 0.240 0.370
c=0.600 0.085 0.185 0.210 0.420 0.140 0.310 0.390 0.600
c=0.800 0.115 0.375 0.370 0.675 0.215 0.555 0.495 0.815
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outperforms general linear model (GLM), we also analyzed the
simulated data using GLM, in which we fitted GLM at each sm without
separating ηi, j(sm) from εi, j(sm). Then, we calculated the global testing
statistic except that we replaced Σ̂η sm; smð Þ in Sn with Σ̂y sm; smð Þ.
Finally, we calculated the p-values with the wild bootstrap method as
in FADTTS. Table 1 shows that GLM is much less powerful than
FADTTS; see also Fig. 2. An advantage of using FADTTS is that it is
capable of modeling the structured inter-subject variability, in
addition to a standard white noise model. Therefore, although the
parameter estimators calculated from the two methods are close to
each other, the covariance estimate of these parameter estimators in
GLM is larger than those in FADTTS. Moreover, standard GLM ignores
the correlation among the data at different grid points.

We carried out the second set of Monte Carlo simulations to
evaluate the coverage probabilities of the confidence bands for
regression coefficients. For simplicity, we only simulated the MD
measure along the right internal capsule tract (Fig. 8(c)) according to

MDi smð Þ = β1 smð Þ + β2 smð Þ × Gi + β3 smð Þ
× Gagei + ηi smð Þ + �i smð Þ;

ð14Þ
Fig. 2. Simulation study: Type I and Type II error rates. Rejection rates of Sn based on the resa
sizes) for sample sizes n=64 and n=128 at α=.05 and α=.01 significance levels.
where ηi(s) is a Gaussian processwith zeromean and covarianceση(s, t)
and �i(s) is a Gaussian random variable with zero mean and covariance
σ�(s, t)1(s= t). We used the MD measure along the right internal
capsule tract from all 128 infants in our clinical study to estimate B̂ sð Þ of
B(s), η̂ sð Þ of η(s), and �̂ sð Þ of �(s), respectively. We fixed all the
parameters at their estimated values and assumed them to be the true
values. Subsequently, we generated random samples τi and τi(sm) from
a N(0,1) generator for i=1,⋯,n and m=1,⋯,M and then constructed

MDi smð Þ gð Þ = β̂1 smð Þ + β̂2 smð Þ × Gi + β̂3 smð Þ × Gagei + τi η̂i smð Þ
+ τi smð Þ �̂i smð Þ:

Based on the generated MD values MDi smð Þ gð Þ for i=1,⋯,n and
m=1,⋯,M, we calculated the simultaneous confidence bands of
functional coefficients β̂1 sð Þ, β̂2 sð Þ and β̂3 sð Þ for all s. The 95% and 99%
simultaneous confidence bands were considered. As noted by Fan and
Zhang (2000) and Ghouch and Genton (2009) amongmany others, an
appropriate smaller bandwidth would improve the coverage proba-
bility of the confidence bands. In our simulations, we found that a
shrinkage factor of 0.8 generally works well. For simplicity and
computational efficiency, we do not consider estimating the bias of
β̂ sð Þ.

Based on 1000 simulated data sets, the empirical coverage
probabilities of β̂1 sð Þ, β̂2 sð Þ and β̂3 sð Þ for the significance level
α=0.01 (or α=0.05) are, respectively, 0.991, 0.994, and 0.978
(0.948, 0.952 and 0.926). The coverage probabilities are quite close to
the claimed confidence levels. Figs. 5 and 9 depict typical simulta-
neous confidence bands.

A real example

This clinical study was approved by the Institutional Review Board
of the University of North Carolina at Chapel Hill. A total of 128
mpling method are calculated at five different values of c (representing different effect

image of Fig.�2


Fig. 3. 3D plots of FA along the right internal capsule tract to illustrate the possible age effect: (a) and (b) 3D line plot and (c) and (d) 3D surf plot.
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healthy full-term infants (75males and 53 females) were taken from a
larger study designated to investigate early brain development. All
128 infants were less than one year old, and the written informed
consent was obtained from their parents before imaging acquisition.
Themean gestational age at MR scanning of the 128 infants was 298±
17.6 days (range: 262 to 433 days). All infants were fed and calmed to
Fig. 4. Splenium tract and diffusion properties along the splenium tract: (a) the splenium t
(c) MD; (d) L1; (e) L2; and (f) L3. The diffusion properties in panels (b)–(f) are from 20 ra
sleep on a warm blanket with proper ear protection. Technicians
ensured that they slept comfortably inside the MR scanner. None of
them was sedated during the imaging session.

A 3 T Allegra head-only MR system (Siemens Medical Inc.,
Erlangen, Germany) was used to acquire all the images. The system
was equipped with a maximal gradient strength of 40 mT/m and a
ract extracted from the tensor atlas with color presenting the mean FA values; (b) FA;
ndomly selected infants.
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Fig. 5. The estimated coefficient functions (blue solid lines) and the corresponding 95% confidence bands (red dashed lines) for the five measures along the splenium tract: (a), (d),
(g), (j), and (m) the varying intercept functions for FA, MD, L1, L2 and L3, respectively; (b), (e), (h), (k), and (n) the varying coefficient functions of gender for FA, MD, L1, L2 and L3,
respectively; (c), (f), (i), (l), and (o) the varying coefficient functions associated with gestational age for FA, MD, L1, L2 and L3, respectively.
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maximal slew rate of 400 mT/(m·ms). The DTI images were obtained
by using a single shot EPI DTI sequence (TR/TE=5400/73 ms) with
eddy current compensation. We applied the six non-collinear
directions at the b-value of 1000 s/mm2 with a reference scan
(b=0). The voxel resolution was isotropic 2 mm, and the in-plane
field of view was set at 256 mm in both directions. To improve the
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Fig. 6. Spectral decomposition of Σ̂η;kk s; tð Þ for FA, MD, L1, L2 and L3 along the splenium tract: (a) the first 12 relative eigenvalues; (b) the first 3 eigenvectors for FA; (c) the first 3
eigenvectors for MD; (d) the first 3 eigenvectors for L1; (e) the first 3 eigenvectors for L2; and (f) the first 3 eigenvectors for L3.
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signal-to-noise ratio of the images, a total of five scans were acquired
and averaged.

To construct the diffusion tensors, we used a weighted least
squares estimation method (Zhu et al., 2007b; Basser et al., 1994a).
We then employed DTI atlas building followed by an atlas-based
tractography procedure to process all 128 DTI datasets. While several
DTI fiber tracts were tracked, we chose to focus in this paper on the
splenium of the corpus callosum and the right internal capsule tract to
illustrate the applicability of our method (Figs. 4 and 8). Five diffusion
properties were extracted along the selected fiber tracts including FA,
MD, and the three eigenvalues of the diffusion tensors, denoted by
L1≥L2≥L3, at each grid point along all fiber tracts of interest for all 128
Fig. 7. − log10(p) values for testing gender and gestational age effects of test statistics Sn(sj)
effects of the splenium tract; (b) − log10(p) values for testing gender and gestational age e
infants (Goodlett et al., 2009). FA and MD, respectively, measure the
inhomogeneous extent of local barriers to water diffusion and the
averaged magnitude of local water diffusion, while Lj j = 1;2;3ð Þ
reflects the magnitude of water diffusivity along and perpendicular to
the long axis of white matter fibers (Song et al., 2003).

In this study, we have two specific aims. The first is to compare
diffusion properties along the selected fiber bundles across the male
and female groups and thus illuminate the gender effect on the
development of these fiber bundle diffusion properties. The second is
to delineate the development of fiber bundle diffusion properties
across time—the age effect. As a graphical illustration, we plotted FA
measures along the right internal capsule tract from 40 randomly
for the two selected tracts: (a) − log10(p) values for testing gender and gestational age
ffects of the right internal capsule tract.

image of Fig.�6
image of Fig.�7


1421H. Zhu et al. / NeuroImage 56 (2011) 1412–1425
selected infants (Fig. 3). We observed that the values of FA increase
with gestational age at nearly all grid points. To statistically test the
gender and age effects, we applied our FADTTS to the joint analysis of
FA and MD values and the three eigenvalues along each of the two
tracts.

For the two selected tracts, we fit the multivariate varying
coefficient model (1) to the smoothed FA and MD values and the
three eigenvalues from all 128 subjects, in which x = 1;G;Gageð ÞT
and M=5. We then estimated the functional coefficients B sð Þ. In the
functional principal component analysis, we estimated η(s) and
constructed the spectral decomposition of Σ̂η;jj s; tð Þ for all j=1,⋯, J by
calculating their eigenvalues and eigenfunctions. For the hypothesis
testing, we constructed the global test statistic Sn via Eq. (10) to test
the gender and age effects for the five diffusion-tensor properties
altogether. We approximated the p-value of Sn using the resampling
method with G = 1000 replications. Finally, we constructed the 95%
simultaneous confidence bands for the functional coefficients B sð Þ.

The bandwidths selected by GCV for the five diffusion properties
along the right internal capsule tract are, respectively, 0.49, 0.68, 0.63,
0.74 and 0.58. Fig. 5 presents the estimated varying functional
coefficients B̂ sð Þ associated with all five diffusion properties (blue
solid lines in all panels of Fig. 5). The intercept functions (all panels in
the first column of Fig. 5) described the overall trend of the five
diffusion properties. Compared with the estimated mean functions
using FRATS (Zhu et al., 2010c), they produced almost identical
curves, which indicates the effectiveness of FADTTS. The gender
coefficients for MD and all three eigenvalues (panels (e), (h), (k), and
(n) of Fig. 5) are negative at most of the grid points, which may
indicate that compared with female infants, male infants have
relatively smaller magnitudes of local water diffusivity along the
Fig. 8. Right internal capsule and diffusion properties along the right internal capsule tract: (
the mean FA values; (b) FA; (c) MD; (d) L1; (e) L2; and (f) L3. The diffusion properties in p
splenium of the corpus callosum. However, the fact that we did
observe positive gender effects at some grid point may weaken our
findings. We did not observe this pattern for FA (panel (b) of Fig. 5).
The gestational age coefficients for FA (panel (c) of Fig. 5) are positive
at most grid points, indicating that FA measures increase with age in
both male and female infants, whereas those corresponding to MD
and all three eigenvalues (panels (f), (i), (l), and (o) of Fig. 5) are
negative at most grid points. This may indicate a negative correlation
between the magnitudes of local water diffusivity and gestational age
along the splenium of the corpus callosum. It also has been noted that
we did observe negative age effects at some grid points of FA and
positive age effects of the other four diffusion properties at some grid
points, which again may weaken our findings.

We presented the eigenvalues and eigenfunctions of Σ̂η; jj s; tð Þ for
all j=1,⋯, J in Fig. 6. For all five measures, the relative eigenvalues of
Σ̂η; jj defined as the ratios of the eigenvalues of Σ̂η; jj s; tð Þ over their sum
have almost identical distributional patterns (panel (a) of Fig. 6). We
observed that the first three relative eigenvalues account for 80% of
the total and the others quickly vanish to zero. The eigenfunctions of
FA corresponding to the largest three eigenvalues (Fig. 6(b)) are
different from those of the other four measures (Figs. 6(c)–(f)). For
MD, L1, L2, and L3, similar patterns were observed among the
eigenfunctions corresponding to the largest three eigenvalues. This
is consistent with the fact that FA is a scaled-invariant measure of all
the eigenvalues.

We statistically test the effects of gender and gestational age on all
five diffusion properties along the splenium tract. To test the gender
effect, we calculated the local test statistics Sn(sm) and their
corresponding p-values across all grid points on the splenium tract;
only a few grid points have − log10(p) values greater than 2 (red line
a) the right internal capsule tract extracted from the tensor atlas with color presenting
anels (b)–(f) are from 20 randomly selected infants.
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Fig. 9. The estimated coefficient functions (blue solid lines) and the corresponding 95% confidence bands (red dashed lines) for the five measures along the right internal capsule
tract. Panels (a), (d), (g), (j), and (m) are the varying intercept functions for FA, MD, L1, L2 and L3, respectively. Panels (b), (e), (h), (k), and (n) are the varying coefficient functions of
gender for FA, MD, L1, L2 and L3, respectively. Panels (c), (f), (i), (l), and (o) are the varying coefficient functions of gestational age for FA, MD, L1, L2 and L3, respectively.
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in Fig. 7(a)). Then, we computed the global test statistic Sn=506.69
and its associated p-value (p=0.054), indicating a weakly significant
gender effect, which agrees with the findings in panels (e), (h), (k),
and (n) of Fig. 5. The − log10(p) values of Sn(sm) for testing the age
effect at most grid points are greater than 2 (green line in Fig. 7(a)),
while a moderately significant age effect was found with Sn=971.16
(p-value=.034). This agrees with the findings in panels (c), (f), (i),
(l), and (o) of Fig. 5, indicating that some diffusion properties along
the splenium tract differ slightly betweenmale and female groups and
changemoderately with gestational age. Furthermore, for all diffusion
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Fig. 10. Spectral decomposition of Ση, kk(s, t) for FA, MD, L1, L2 and L3 along the right internal capsule tract: (a) the first 12 relative eigenvalues for FA, MD, L1, L2 and L3; (b) the first 3
eigenvectors for FA; (c) the first 3 eigenvectors for MD; (d) the first 3 eigenvectors for L1; (e) the first 3 eigenvectors for L2; and (f) the first 3 eigenvectors for L3.
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properties, we constructed the 95% simultaneous confidence bands of
the varying coefficients for Gi and Gagei (Fig. 5).

For the right internal capsule tract, we have the following findings.
Fig. 9 presents the estimated B̂ sð Þ associated with all diffusion
properties along the right internal capsule tract (blue solid lines in
all panels of Fig. 9). Since the patterns in Fig. 9 were similar to those in
Fig. 5, we do not repeat them here. Moreover, for j=1,⋯,5, Fig. 10
presents the relative eigenvalues and eigenvectors of Σ̂η; jj s; tð Þ along
the right internal capsule tract. As shown in Fig. 10(a), the first three
relative eigenvalues account for the 70% of the total, and the rest
quickly vanish to zero. For all diffusion properties, the eigenfunctions
associated with the largest first eigenvalues for the right capsule tract
(panels (b)–(f) of Fig. 10) show patterns similar to those for the
splenium tract in Fig. 6. Moreover, we found no significant effect of
gender since Sn=420.05 with a p-value of 0.347, even though the
− log10(p) values of Sn(sm) for gender are greater than 2 at a few grid
points (red line in Fig. 7(b)). However, a highly significant effect of
gestational age was found with Sn=1549.1 and its p-value pb0.001,
Table 2
The p-values of Sn for testing the effects of gender and gestational age on the splenium
and right internal capsule tracts.

Splenium Right internal capsule

Gender Gestational age Gender Gestational age

FA 0.683 0.103 0.169 b0.001
MD 0.063 0.008 0.354 b0.001
L1 0.048 0.003 0.241 b0.001
L2 0.057 0.007 0.314 b0.001
L3 0.302 0.010 0.376 b0.001
(FA, MD, L1; L2; L3) 0.054 0.034 0.347 b0.001
while the− log10(p) values of Sn(sm) for the age effect are greater than
2 at all grid points (green line in Fig. 7(b)). This indicates that diffusion
properties along the right internal capsule tract do not differ
significantly between male and female groups but are significantly
associated with gestational age. Finally, we constructed 95% simulta-
neous confidence bands for the functional coefficients (Fig. 9).

In our last step, we applied FADTTS to each of the five diffusion
properties along both the right internal capsule tract and the
splenium tract and then calculated the global test statistic Sn and its
associated p-value (Table 2). For the splenium tract, recall the overall
p-values p=0.054 and p=0.034 for the gender effect and the age
effect, respectively, based on all five diffusion properties. Inspecting
individual diffusion properties reveals that gender mainly has a mild
effect on MD, L1 and L2, while age influences MD and the three
eigenvalues. These results agree with the findings in Fig. 9. For the
right internal capsule tract, the overall p-values are given by p=0.347
and pb0.001 for the gender effect and the age effect, respectively,
based on all five diffusion properties. We did not observe a gender
effect on any of the five individual diffusion properties, but there are
significant age effects on all of them.

Discussion

The contributions of our work are twofold. From the statistical
perspective, we have developed a new functional analysis pipeline for
delineating the structure of the variability of multiple diffusion
properties along major white matter fiber bundles and their
association with a set of covariates of interest. The FADTTS pipeline
integrates five advanced statistical tools from the statistical literature.
From the application perspective, we have demonstrated FADTTS in a
clinical study of neurodevelopment for revealing the complex
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inhomogeneous spatiotemporal maturation patterns as the apparent
changes in fiber bundle diffusion properties. We expect that this novel
statistical tool will lead to new findings in our clinical applications.

Several limitations need to be addressed in future research. Even
though the three eigenvalues satisfy the constraint L1≥L2≥L3, model
(1) and its associated statistical procedure do not impose such a
constraint. Moreover, for some strongly nondegenerate tensors
(L1 N N L2 N L3) with small L2 and L3, there may be difficulty in
distinguishing these two smallest eigenvalues. It is also possible that
the fitted mean eigenvalues obtained from model (1) may be
negative. A possible solution is to require that the fitted eigenvalue
in model (1) be non-negative; an alternative solution is to use the
logarithm of eigenvalues as responses. Both are topics for future
research.

All fiber tract based methods including FADTTS are only applicable
to these major white matter tracts in which one can establish the
common localization across subjects. Thus, FADTTS is able to
investigate a subset of different scenarios in which white matter
structure is associated with a covariate, such as age, gender, and
diagnostic status. For instance, the centroid of the localization of white
matter lesion could vary across time and subjects. In this case, neither
ROI based methods nor tract based methods would be appropriate. In
some heterogenous populations, it is possible that tract-specific
changes occur in only a subset of subjects.

There are several current topics for our research. We are
developing new statistical methods for making statistical inferences
about both the eigenvalues and eigenfunctions in FPCA and for
establishing the association of eigenvalues and eigenfunctions with a
set of covariates of interest. We are exploring other nonparametric
methods, such as wavelet and B-spline methods instead of using local
polynomial kernel. We are in the process of extending FADTTS to the
analysis of high angular resolution diffusion image (HARDI), which is
important for resolving the issue of fiber crossing (Lenglet et al., 2009;
Tuch et al., 2002). It is also important to extend FADTTS to principal
directions and full diffusion tensors on fiber bundles (Schwartzman,
2006; Lepore et al., 2008; Schwartzman et al., 2005; Zhu et al., 2009;
Whitcher et al., 2007). The proposed methodology can be readily
extended to more complex fiber structures, such as the medial
manifolds of fiber tracts (Yushkevich et al., 2008). Furthermore, we
will extend FADTTS to longitudinal studies and family studies (Fang
and Wang, 2009). Finally, we have treated fiber bundle diffusion
properties as functional responses. It will be interesting to consider
generalized functional linear models, in which a scalar outcome (e.g.,
diagnostic group) is used as the response and fiber bundle diffusion
properties are used as varying covariate functions (or functional
predictor) (Ramsay and Silverman, 2005; Goldsmith et al., in press).
Appendix A. Supplementary data

Supplementary data to this article can be found online at
doi:10.1016/j.neuroimage.2011.01.075.
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