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Abstract— We propose an automatic approach for segment-
ing the left atrium from MRI images. In particular, the
thoracic aorta is detected and used as a salient feature to
find a seed region that lies inside the left atrium. A hybrid
energy that combines robust statistics and localized region
intensity information is employed to evolve active contours
from the seed region to capture the whole left atrium. The
experimental results demonstrate the accuracy and robustness
of our approach.

I. INTRODUCTION

Automatic segmentation of the left atrium in magnetic
resonance imaging (MRI) is a challenge and important task
in medical image analysis. For example, it can be used
to analyze atrial fibrillation [1]. Challenges arise from the
following facts: 1) the size of the left atrium is relatively
small as compared to the left ventricle or lungs in cardiac
MRI images; 2) boundaries are not clearly defined when the
blood pool of the left atrium goes into the pulmonary veins;
3) the shape variability of the left atrium is large between
different subjects.

To overcome those difficulties, shape models are widely
used in cardiac image segmentation. In general, given a
sufficient number of training images, we can either build
shape models from source images using machine learning
techniques or directly register all of the source images to
a target image and then fuse these registration results for
one consistent solution which is called multi-atlas based
segmentation. One example of the first type is a principal
component analysis (PCA) based method [2]. In that work,
the shape space of the left atrium is defined as a linear
combination of the eigen shapes learned using the PCA
technique. Then, segmentation is accomplished via evolving
active contours in the shape space. In [3], a probability map
is generated by using a majority voting scheme over the
pair-wise registration results between all of the atlases and
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the target image. After that, the map is thresholded to get a
binary mask for the left atrium. Finally, the mask is refined
using a localized region-based active contour method [4].
Label fusion [5] and whole heart model [6] are also used in
the left atrium segmentation.

However, to capture the shape variations of the left atrium,
a large number of training data is required for building
statistical shape models. In addition, automatic localization
of those models is not trivial and much less research has been
done on this topic. The purpose of this work was to develop
an automatic segmentation technique without using training
images or shape models for segmenting the left atrium. To
achieve this goal, we define a salient feature that is robust
to image variations. Then, we combine the on-line statistics
inferred from the salient feature with a localized region-based
active contour model to form a hybrid energy functional.
Based on this formulation, the left atrium segmentation
is solved by using gradient descent flows to drive active
contours towards the left atrium. The overall method is
fully automatic and easy to implement. Note that the salient
feature detection result can be used in other model-based
segmentation frameworks for initial localization.

The outline of this paper is as follows. Section 2 starts
with the description of the salient feature detection and
elaborates on the contour evolution method. Section 3 shows
the experimental results with discussions. Finally, Section 4
concludes this paper.

II. METHOD

One salient feature that can be used to segment the left
atrium is the thoracic aorta (TA). It has a circular shape in
the axial view that can be detected robustly using the Hough
transform technique [7]. Given the location of the TA, we
can extract a seed region inside the left atrium using both
region and gradient information. After that, an active contour
is initialized and driven by robust statistics and a localized
region-based force to explore the whole left atrium.

A. Salient Feature Detection

Assume that the left atrium lies close to the center of a
cardiac MRI image. We chose the middle slice along the
axial direction as the key slice Ikey. The Hough transform
[7] is performed on Ikey to find circles in a predefined region
of interest (ROI). It converts the image Ikey to a parametric
space (a, b, r) and counts the accumulated response of cir-
cles, denoted by p(a, b, r), at each (a, b, r). Here (a, b, r) is
a circle of radius r centered at (a, b). Finally, it returns a list
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of circles. A circular response to intensities is assigned to
each circle c(a, b, r) as

h(a, b, r) = p(a, b, r)(µ(a, b, r)− µ(a, b, r, R))/σ(a, b, r),
(1)

where µ(a, b, r, R) is the mean intensities of a ring centered
at (a, b) with radiuses r and R, µ(a, b, r) and σ(a, b, r) are
the the mean and standard deviation of the intensities within
c(a, b, r), respectively. Here h(a, b, r) favors homogeneous
regions with higher intensity values inside c(a, b, r) than
c(a, b, r, R). The region with the maximal h(a, b, r) response
is chosen as the TA region.

B. Contour Evolution

1) Left Atrium Seed Region Extraction: The seed region
inside the left atrium is extracted by first finding the heart
region and then searching for seed points that belong to the
left atrium.

To segment the heart region, the Otsu’s method [8] is
applied to Ikey to convert it into a binary image. The largest
connected component is chosen as the initial segmentation
of the heart. The TA region is excluded from the segmented
heart region if they have overlaps. Then, the coarse segmen-
tation is refined using a localized region-based active contour
method [4], [9] to minimize an energy functional

ELG(C) = Ein(C) + Eout(C), (2)

where

Ein(C(s)) =

∫
C(s)

∫
x∈R

(Iχ(x, s)− ul(s))2dAds (3)

Eout(C(s)) =

∫
C(s)

∫
x∈Rc

(Iχ(x, s)− vl(s))2dAds (4)

where C(s) denotes a closed curve parameterized by its
arclength s, R represents the region inside C(s), Rc is the
region outside C(s), and dA is the area element. χ(x, s)
is a characteristic function that has value 1 if x is inside a
ball B(C(s)) centered at C(s) and 0 otherwise. ul(s) and
vl(s) are the means of intensities in local neighborhoods
around C(s). The area integral defines a Chan-Vese energy
[10] that tries to separate the intensity means between the
regions divide by C(s) inside B(C(s)). The line integral is
the typical geodesic active contour energy [11].

By computing the first variation of ELG(C) with respect
to C(s), we get the gradient descent flow of C(s) [9] as

∂C(s)

∂t
= (∫

R

(Iχ(x, s)− ul(s))2dA

+

∫
Rc

(Iχ(x, s)− vl(s))2dA
)
κN

−
∮
C(r)

(
(Iχ(C(s), r)− ul(r))2

+(Iχ(C(s), r)− vl(r))2
)
drN, (5)

in which N is the inward unit normal vector field on C(s)
and κ is the curvature of the contour. This step captures the
bright region of the heart which contains the left atrium.

To narrow down the search space, the gradient information
of Ikey is used to extract the seed region inside the left
atrium. To this end, we set the detected heart region as our
ROI and compute the magnitude of gradient, Ig, for Ikey.
Then, Ig is converted into a binary image using a threshold
mean(Ig). A distance transform [12] is performed on this
binary image. On the distance field image Idist, we search
for a circular region that has the maximal response to the
following measurement as the seed region inside the left
atrium,

SLA =

∫ ∫
B(x,rl)

Idist(x)dA

dist(x,TA)
(6)

where B(x, rl) is a ball of radius rl centered at x and
dist(x,TA) is the distance from x to the center of TA.

2) Hybrid Evolution Flow: Note that the energy Ein or
Eout is a region-based energy that tends to drive active
contours to where regions can be locally divided into two
distinct areas. However, the driven force is fairly small if the
neighborhood around a contour point is almost homogeneous
like near the seed region. To solve this problem, we propose
a new energy that adds a region growing term to ELG. The
new functional needs to be minimized is

EH(C) = α(Ein(C)+Eout(C))+βERS(C)+γ

∫
C

ds, (7)

where the last term controls the smoothness of C(s), α, β,
and γ adjust the contribution of each term. ERS is a region
growing energy [13] that utilizes the robust statistics of the
seed region. To compute the robust statistics, a feature vector
is defined for each pixel x in an image as

f(x) = (MED(x), IQR(x),MAD(x))T ∈ R3, (8)

where MED(x), IQR(x), and MAD(x) are the intensity
median, inter-quartile range, and median absolute deviation
around a neighborhood of x, respectively. Then, the seed
region is characterized by the probability density function of
the feature vectors as

p(f) =
1

|G|
∑
x∈G

Kη(f − f(x)), (9)

where K is the kernel function. We use Gassian kernel in
this work. The robust statistics energy is defined as

ERS(C) =

∫∫
R

−p(f(x))dx, (10)

where R is the region inside contour C. The gradient descent
flow of C is

∂C(s)

∂t
= −p(f(C(s))N. (11)

Here N is the inward unit normal vector field on C(s) (see
[13] for details).

The gradient descent flow of EH(C) is just a combina-
tion of the flows in equations (5) and (11). Note that we
have shown a hybrid evolution flow in 2D. However, the
generalization to 3D is straightforward.
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III. EXPERIMENTS AND RESULTS

We evaluated the proposed segmentation method using 12
cardiac MRI images that have large variations among the left
atrium.

To detect the salient feature, the image Ikey was divided
into four regions and the bottom right one was chosen
as our ROI. The Hough transform only looks for circles
with radius 10 < r < 16mm. In all of the test, we
set rl = 0.6r in searching for the seed region. Figure 1
illustrates the process of detecting the seed region. Note that,
although boundaries are not clearly defined at where the left
atrium connects to other chambers, partial boundaries still
exist that separates the left atrium from other heart regions.
Specifically, as shown in Figure 1(c), three isolated distance
clusters are formed and one of which is contained in the
left atrium. Thus, the seed region was successfully identified
using the measurement defined in equation 6. Our method
was succeeded in detecting seed regions for all of the 12
MRI images. Figure 2 shows four representative detection
results where the shapes of the left atrium are significantly
different as being viewed from their key slices Ikey.

(a) (b)

(c) (d)

Fig. 1. Seed region detection process. (a). TA (green circle) and heart
region (yellow contour). (b) Edges within the heart region. (c) Distance
field. (d) Seed region (red circle)

In the contour evolution stage, the sparse field level set
method [14] was used for its efficiency. Also, all of the
data were downsampled to 2× 2× 2mm3 voxel size before
starting active contour evolution. We set α = 0.5, β = 0.5,
and γ = 0.3 in all experiments. The contour evolution starts
from the seed region and stops when the volume change rate,
|vi − vi−1|
vi−1

, between two iterations i − 1 and i is less than

a threshold Tv , which is 0.01 in our test. Figure 3 shows
an example of the segmentation in the axial view using
ERS only or the hybrid energy EH . It demonstrates that
the robust statistics force pushes the contour from the seed
region outwards but provides less stopping force than the
hybrid force when the contour is approaching boundaries.
Therefore, evolution leakage happens in Figure 3(a). A 3D
view of this segmentation result is given in Figure 4.

(a) (b)

(c) (d)

Fig. 2. Seed region detection results for different MRI images. The TA is
marked with green circle and the seed region with red circle. The yellow
contour encloses the heart region.

(a) (b)

Fig. 3. Comparison of segmentation with energy (a) ERS and (b) EH .

To quantify errors, we measure the overlap between auto-
matic segmentations Va and the ground truth Vm using the
standard Dice coefficient [15]

D(Va, Vm) = 2
‖Va ∩ Vm‖
‖Va‖+ ‖Vm‖

. (12)

The mean and standard deviation are 0.82± 0.06. The most
of mismatches are around the pulmonary veins where high-
level priors are needed for better segmentations.

IV. CONCLUSIONS

We have outlined an automatic segmentation method for
extracting the left atrium using salient feature and contour
evolution techniques. This method is based on a salient
feature for localizing the left atrium. Thus, it is robust to
shape variations and image quality. The contour evolution
step starts from a seed region inferred via the salient feature
and is able to explore the image to find the whole left atrium.
The experimental results show the accuracy and robustness
of our approach. We will test our algorithm with more MRI
images and investigate the application of our approach to the
atrial fibrillation analysis in the future.

ACKNOWLEDGEMENTS

This work was supported in part by grants from AFOSR,
ARO, ONR, and MDA. This work is part of the National Al-
liance for Medical Image Computing (NA-MIC), funded by
the National Institutes of Health through the NIH Roadmap
for Medical Research, Grant U54 EB005149. Information

3213



Fig. 4. 3D view of the segmented left atrium.
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