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Abstract

Direct volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult
task since current methods, such as traditional 1D and 2D transfer functions are not always effective for all datasets. Various
1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the
gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer
function method which can provide more specificity for data classification by combining different transfer function spaces. In this
work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use
the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with
occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by
comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions
and 2D size based transfer functions.
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1. Introduction

Direct volume rendering has been an active area of research.
Mapping of data values to optical properties, known as clas-
sification, remains a challenging problem. Transfer functions
are most commonly used for classification in volume render-
ing, yet finding good transfer functions remains a difficult prob-
lem. For material boundaries, it has been shown that 2D trans-
fer functions provide greater specificity1 than 1D transfer func-
tions [1, 2]. In many datasets, separate features may share the
same scalar value and gradient magnitudes and as such value,
gradient magnitude tuples are not sufficient for separating such
features.

Recently, many new 2D transfer function spaces have been
proposed to improve the classification from different metrics.
The size based transfer function is a transfer function space [3]
built upon blob detection techniques using scale space theories
to classify objects based on their sizes. The occlusion spectrum
is another 2D transfer function space [4] which takes into con-
sideration ambient occlusion within the volume for discriminat-
ing between features of similar scalar values. It is also possible
to compute statistical measurements such as mean value and
standard deviation in a local region around a voxel [5] to form
a 2D transfer function space. All of these methods are effective
on some datasets. Other datasets however may contain mate-
rials which have similar statistical properties but occlude each
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1We use the disambiguation definition of specificity rather than the statisti-
cal definition which means the proportion of negatives in a binary classification
test which are correctly identified.

other, or have materials share similar statistical properties and
occlusion measurements but differ in size.

As such, we propose to combine the best features of these
transfer functions to create a transfer function space that pro-
vides better specificity. Our contributions in this work are three
fold: 1) Combining 2D transfer function space with 1D transfer
function spaces with a basic approach for selecting combina-
tions. 2) An user interface supports transfer function design
in the combined transfer function space. 3) Experiments and
detailed discussions of different transfer function combinations
and original 2D transfer functions on various data sets.

We experimented with the combinations of these transfer
function spaces and discuss a basic approach for selecting com-
binations that improve classification and show that this com-
bined transfer function space provides better classification than
either just 2D gradient magnitude transfer functions, 2D statis-
tical transfer functions, 2D occlusion based transfer functions
or 2D size based transfer functions.

2. Related Work

The most frequently used transfer function for volume ren-
dering is a 1D transfer function that uses scalar values for clas-
sification. Realizing the poor classification ability of that trans-
fer function space, Levoy [2] and Kindlmann et al. [1] used the
gradient magnitude of the volume as another property for bet-
ter classification. Kniss et al. [6] advocated and implemented
multi-dimensional transfer functions widgets, making the 2D
transfer function a standard method in modern volume render-
ers. By far, the 1D and 2D transfer functions are the most pop-
ular and practical techniques for classification in volume ren-
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dering, however, great efforts have been made to define new
transfer function spaces to improve the classification ability.

Due to noise and partial volume effects, selecting a bound-
ary in the arches in the gradient magnitude based transfer func-
tion is not easy and sometimes even impossible. To resolve
this problem, Lundstrom et al. [7] employ the local histograms
to better discern tissues in medical data sets and propose a 2D
transfer function space that uses competitive classification cer-
tainty measure in addition to scalar values. Sereda et al. [8] use
2D LH histogram based transfer function for easier boundary
identification and selection and further use this boundary infor-
mation for a region growing segmentation schema.

The theory of scale-space, developed originally by the com-
puter vision and image processing communities, can be used to
classify objects based on their sizes. A commonly used scale-
space representation is the linear Gaussian scale-space, which
is essentially a convolution of a volume with differently sized
Gaussian filters. Lum et al. [9] combine it with an image pyra-
mid representation of different scales to improve classification.
Correa and Ma [3] create a continuous scale-space for the vol-
ume and use anisotropic diffusion to detect “blobs” in the vol-
ume. The size of these defines an additional metric of the vol-
ume, which is then used to create size-based transfer functions.

Shape is another important aspect to classify an object, as
such Sato et al. [10] use eigen value analysis on 3D local in-
tensity structures to classify tissues in medical datasets with
2D transfer function spaces created using shape measurements:
sheet, line or blob respectively along with the scalar value.
Prassni et al. [11] propose shape based transfer functions by
computing shape descriptors over pre-segmented volume to
provide a manageable set of shape classified volumetric fea-
tures with an intuitive optical properties assignment interface.

Taking concepts from computer graphics, Kindlmann et al.
[12] use curvature as a second dimension of their transfer func-
tion domain to create non-photorealistic renderings. Correa and
Ma [4] use the occlusion of a voxel as an additional dimension
of the transfer function domain to classify features of similar
scalar value, but different local neighborhoods.

Volumes can also be classified based on their statistical met-
rics, such as mean value or standard deviation of voxels in a
certain neighborhood. Caban et al. [13] compute local statis-
tical metrics and use their linear combinations to classify fine
structures. Patel et al. [14] use a dynamically changing neigh-
borhood to compute mean value and variance for voxels, thus
defining a transfer function domain. A user interface then al-
lows to select features based on the mean value, variance and
radius of the neighborhood. Haidacher et al. [5] further extend
this approach by selecting the radius semi-automatically via an
adaptive sample selection technique.

Transforming the volume data into frequency domain is an-
other idea for generating transfer function spaces. Vucini et
al. [15] utilize GPU based Fast Fourier Transformation to sup-
port interactive frequency-based transfer function design that
enhances conventional volume visualization.

Transfer function spaces that have been proposed are many
as can be seen above, however, we argue that as a general ap-
proach, it is not necessary to include all of them into our study

although the transfer function spaces can be used are not limited
to the ones we choose in this work. We choose each of our el-
ement transfer functions from a different category listed above
to reduce the dependencies between the transfer function spaces
and thus hopefully improve the classification. As a result, the
traditional 2D gradient magnitude transfer function, the statis-
tical transfer function [5], the size based transfer function [3]
and the occlusion transfer function [4] are chosen as the ele-
ment transfer functions due to the effectiveness in classification
they have exhibited and their relative easiness of implementa-
tion.

User interface design, especially to make high dimensional
transfer functions practical, is equally important to the specific
transfer function domain, and thus has been the focus of re-
cent work. Piringer et al. [16] propose to interact with three 2D
scatterplot views and get feedback in a 3D scatterplot view to
design 3D transfer functions in the SimVis system [17]. They
have later added direct volume rendering to the result. This
method although provides more generality than ours, there is
no systematic evaluation of which scatterplot views should be
used. Furthermore, the scatter plots are on the original data, not
data transformed by existing transfer function domains. It also
introduces more complexity into user interaction. We believe
that with the transfer function combination selection algorithm
proposed in Section 3.2, our simpler user interface can achieve
similar classification precision with an easier and more intuitive
user experience. Lum et al. [9] use parallel coordinates to select
features of different sizes. Patel et al. [14] present a 3D transfer
function editor that allows the user to select mean value, stan-
dard deviation and feature radius respectively. Guo et al. [18]
develop a system that combines parallel coordinates and dimen-
sional reduction techniques to design high dimensional transfer
functions.

Kniss et al. [19] proposed that separable transfer functions
may lead to erroneous classifications; the method discussed in
detail in Section 3.1 however does not suffer from similar arti-
facts. Rezk-Salama [20] briefly discusses a similar idea, called
local transfer functions where a volume segmentation method
is used to create a so called tag volume, which is then used to
select a transfer function associated with a specific tag. Our
proposed combined transfer functions instead use a 2D transfer
function to select another 1D transfer function to classify multi
variate data sets. Bruckner et al. [21], in the context of illustra-
tive volume renderings, use a 1D transfer function to index into
a table of style transfer functions which then, in conjunction
with a screen space normal are used to determine shading of
samples. Those are, while similar in implementation, conceptu-
ally different from the proposed transfer function combinations,
which are used to classify multi-variate data sets.

3. Combining Transfer Functions

3.1. Combining Transfer Functions

In practice, using just one or two metrics during volume clas-
sification makes it difficult to robustly classify and separate fea-
tures in complex volumes. Using more properties in the transfer
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function space often can better describe features in the volume,
however, user interaction becomes more difficult or even im-
possible when the number of properties, thus the dimensional-
ity, of the transfer function space increases. Gaussian transfer
functions have been proposed by Kniss et al. [19] to provide
analytical multi-dimensional transfer functions of arbitrary di-
mensionality, also a procedural high-dimensional transfer func-
tion model is proposed in [22]. However, in both works, how
to provide an effective user interface remains unclear.

The proposed transfer function combination sequentially ap-
plies two transfer functions, a two-dimensional and a one-
dimensional one, to all voxels vX , where X is the 3D position,
of the input dataset V that has l properties Y1,Y2, . . .Yl .

{C1,C2,C3, . . .Ck}= TFw(V )where
C j := {vX |TFw j(Yp(X),Yq(X))> 0, p,q ∈ [1, l]} (1)

{Wi ⊂C j}= TFr(Yr(X))where
X ∈C j(X), j ∈ [1,k],r ∈ {1, . . . , l}/{p,q} (2)

In Equation 1, a number of 2D transfer function widgets, k,
are first applied to the volume, resulting in sets of classified
voxels C1,C2,C3 . . .Ck respectively. Then one from a set of r,
which is typically 1 or 2, 1D transfer functions is applied to the
classified region C j, yielding the final classified volume region
Wi. Each 2D transfer function widget has one associated 1D
transfer function.

Kniss et al. [19] clearly show a 2D example that separat-
ing high dimensional transfer functions into lower dimensional
ones using multiplication can lead to misclassification, which
gets worse when the dimensionality is extended into 3D. Our
proposed method however does not suffer from such issue as
each 2D transfer function widget has a 1D transfer function
that help further separating features within the voxels selected
by the 2D transfer function. This dimension reduction method
however can cause classification inconsistencies compared to
a true 3D transfer function. We believe that this is a reason-
able compromise, considering that the losses in classification
precision compared to using an equivalent higher dimensional
transfer function are typically minor.

Rezk-Salama [20] proposed a similar idea called local trans-
fer functions to set transfer functions for segmented volumes,
i.e. a transfer function is associated with a tag in the tagged
volume; voxels are essentially pre-classified and their tags are
stored in a volume. Our method is more flexible as the user es-
sentially interactively labels voxels using the 2D transfer func-
tions and then further classifies the features using the associated
1D transfer function. Bruckner and Gröller [21] similarly use a
1D transfer function to index into a table of style transfer func-
tions for flexible illustrative volume renderings. Their work
conceptually differs from ours as our transfer function combi-
nation method is utilized to improve the specificity of transfer
functions rather than producing illustrative visualizations.

3.2. Selecting Combinations
We propose to separate the transfer function space into a 2D

transfer function space with a set of 1D transfer function spaces
as a trade off between dimensionality and usability.

A problem naturally arises when more than three proper-
ties/attributes are provided, namely which properties contain
salient features, which attributes are most effectively used as
the 2D transfer function domain, and which are best classified
by the associated 1D transfer functions. Thus, we provide a
few simple rules to aid the user in selecting appropriate combi-
nations.

For a given set l properties of a data set, the correlation co-
efficient matrix R of size l × l is computed, as well as the en-
tropy vector E of size l contains all properties’ entropy. The
primary property Yp, is chosen that represents the original in-
formation of the dataset (e.g. original intensity dataset or the
mean dataset computed from the statistical properties extrac-
tion process as shown in section 4.3). A property that is intrin-
sically associated with Yp (e.g. gradient magnitude vs. original
intensity dataset or standard deviation vs. mean value) is used
as the secondary property Yq. The primary and secondary prop-
erties define the 2D transfer function space. For all remaining
properties Yi, i ∈ [1, l] and i , p,q a score is computed as a lin-
ear interpolation between the correlation coefficient Rpi and the
normalized entropy E(Yi)

maxE , as shown in Equation 3:

si =−a|Rpi|+(1−a)
E(Yi)

maxE
,0 ≤ a < 1 (3)

Correlation coefficient depicts the similarity between prop-
erties: a lower correlation coefficient value indicates higher
independences of properties. By intuition, more independent
properties correspond to more interesting features which can be
hopefully extracted by combining them together. Therefore, we
favor properties that are less correlated with the already chosen
properties and as such a negative relationship between the ab-
solute value of correlation coefficient |Rpi| and the score si is
shown in Equation 3. Specifically, the coefficient matrix R of
property Yp and Yi is computed by Equation 4.

Rpi =
Cov(p, i)√

Cov(p, p)Cov(i, i)
(4)

where Cov(p, i) is the covariance matrix of property Yp and Yi.
However, using correlation coefficient alone could lead to

situations where properties that do not increase classification
ability can beat more meaningful properties in the scoring, and
to remedy this, the entropy of a property is also considered in
Equation 3. The entropy value of a property reflects the amount
of information contained in that property, is shown as a normal-
ized form E(Yi)

maxE in Equation 3. The entropy is defined as

E(Yi) =
n

∑
b=1

p(yb) log2(p(yb)) (5)

where n is the number of bins in the histogram of property Yi,
b is the current bin, and p(yb) is the probability of data value
yb at current bin. E(Yi) describes the homogeneity of property
Yi and is inversely proportional to the homogeneity, i.e. higher
entropy represents less homogeneity.

Properties that are less homogenous usually contain more
features of interest compared to more homogenous ones. There-
fore, low homogeneity can be used to rule out less contributing
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properties that have a high score from correlation coefficient.
As such, high entropy is desired in our scheme: i.e. properties
that are less homogenous are favored over more homogenous
ones. However, low entropy may also be of interest in some
occasions: e.g. it is conceivable that a property may contain
large homogenous regions but uniquely highlights some small
feature that is missed in all other properties. The classification
ability of such a property is difficult to describe mathematically
but could be rather easily determined subjectively through in-
teractive exploration. Our system would miss such cases.

The parameter a is data set dependent and allows the user to
choose a balance between the correlation of two properties and
the amount of information contained in an individual property.

The remaining properties are then ranked based on their
scores si and used as the tertiary attributes for the associated
1D transfer functions. We found that using one or two tertiary
attributes provides a good compromise between complexity and
effectiveness of the classification. One of the available tertiary
attributes is selected as the active one for each widget in the 2D
transfer function space.

As an example, the process of combination selection for CT
chest scan Artifix discussed in section 5.2 is shown below. Us-
ing the rules, we compute the correlation coefficients and the
entropies of the five properties of the data set as shown in Ta-
ble 1.

x |∇x| µ σ ρ
x 1.0000 0.1654 0.9973 0.2435 0.7286

|∇x| 0.1654 1.0000 0.1690 0.9569 -0.0583
µ 0.9973 0.1690 1.0000 0.2464 0.7388
σ 0.2435 0.9569 0.2464 1.0000 0.0067
ρ 0.7286 -0.0583 0.7388 0.0067 1.0000
E 5.3828 3.6077 4.8012 3.8392 7.9090

Table 1: The correlation coefficients and the entropies of the properties com-
puted from Artifix CT chest scan dataset with the intensity value x, the gradient
magnitude |∇x|, the mean value µ , the standard deviation σ and the occlusion
metric ρ . The bottom row shows the entropy E of each attribute.

Choosing the scalar value x as the primary attribute sug-
gests using the gradient magnitude |∇x| as the secondary at-
tribute. Then scores sµ,σ ,ρ for mean, standard deviation and
occlusion properties respectively are computed for the re-
maining attributes by setting a to 0.4, which yields sµ,σ ,ρ =
[−0.0347,0.1938,0.3086]. The occlusion property has the
highest score meaning it is the best property regarding both the
correlation between it and the primary attribute and the infor-
mation it contains. As such it is used as the tertiary attribute
to define a combined 3D gradient magnitude/occlusion transfer
function space.

Alternatively, choosing the mean value µ and the standard
deviation σ as the primary and secondary attributes, the scores
sx,|∇x|,ρ are computed for the other attributes, yielding sx,|∇x|,ρ =
[0.0094,0.2061,0.3045] for scalar, gradient magnitude and oc-
clusion properties respectively. The occlusion property has the
highest score and is thus used as the tertiary attribute to define
a combined 3D statistical/occlusion transfer function space.

3.3. User Interface

In general, true 3D transfer function widgets are relatively
difficult to interact with, since robust and effective interaction
with a 3D space is still an open research problem [23]. The pro-
posed combined transfer function space however is separable
into a 2D transfer function space and a set of 1D transfer func-
tion spaces. Haidacher et al. [24] proposed a similar separation
method for multimodal visualization, in contrast to their sim-
ple triangle shaped windowing function our method provides
more insights and flexible controls for the 1D transfer function
spaces. This separation as stated before can cause decreased
classification precision when the 1D transfer function spaces
are not independent from the 2D transfer function space com-
pared to a true 3D transfer function space. However, our com-
bination selection rules proposed in section 3.2 help to rule out
highly dependant 1D transfer function spaces. Therefore, we
believe this separation is a good trade off between interactivity
and classification precision.

Each 1D transfer function is attached to every selected region
in the 2D transfer function domain based on the usual transfer
function widgets or selectors. Thus, features in the volume can
be classified by selecting their voxels in the 2D domain defined
by the primary and secondary attributes. In cases where those
voxels represent multiple separate features, the additional 1D
transfer function can be used to further separate such features
within the voxels selected in the 2D domain using one of the
tertiary attributes. While adding complexity to the manipula-
tion of transfer functions, this technique provides familiar in-
teraction with each of the 2D and 1D transfer functions (TF).
We believe this additional interaction (combining familiar 2D
TF manipulation with familiar 1D TF manipulation) provides a
reasonable method for interacting with the higher dimensional-
ity of transfer function combinations. However, it does require
users to be familiar with such interaction techniques.

Figure 1 illustrates the proposed 3D transfer function editor
for a 2D gradient magnitude transfer function space with as-
sociated 1D occlusion transfer functions. The top part shows
the 2D gradient magnitude transfer function domain x×||∇x||,
where user can place and interact with traditional 2D transfer
function widgets [6] TFw2D and a more generic lasso tool. The
occlusion volume space ρc or the size volume space tc of the
region c selected by the currently active 2D transfer function
widget TFwc is represented by a 1D transfer function editor,
shown at the bottom, along with a 1D histogram of the occlu-
sion information of all voxels selected by c. That is, the 1D
transfer function editor operates strictly on voxels selected by a
2D transfer function widget (the blue one in Figure 1).

The 2D transfer function widgets, such as ellipse, rectangle
or triangle widgets as proposed by Kniss et al. [6], typically in-
clude some default shapes with few degrees of freedom. Users
are able to set colors, opacities and different fall-offs for each
of these widgets. These tools provide facilities to the user for
a general exploration of transfer function spaces using easy to
manipulate high level widgets.

However, it is difficult for the user to precisely select arbi-
trary regions. This often prevents a user from exploring the
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Figure 1: The separable 3D Transfer Function Editor with the 2D gradient mag-
nitude transfer function space x× ||∇x|| shown on top, and the 1D occlusion
space ρc attached to the currently selected widget c in the 2D space, shown
below. In this example, the blue widget is active, and as such the 1D histogram
represents the occlusion information of all the voxels with statistical properties
selected by the widget in the 2D statistical domain.

subtle structures in the transfer function domain, which may
make a significant difference in the final visualization. Thus,
similarly to commonly used image processing applications, we
also include a lasso tool to allow the user to intuitively and eas-
ily select arbitrary regions by drawing the region boundaries
directly into the transfer function space. In Figure 1, the red
curve illustrates the hand drawn boundary path with a spherical
fall-off for the color and opacity. A box on the left hand side of
the 1D transfer function editor allows the user to select which of
the tertiary attributes is used as the 1D transfer function space
for each 2D widget.

The proposed user interface allows the user to interact with
the 3D transfer function space intuitively. Whenever the user
creates a transfer function widget on the 2D transfer function
space, the histogram of the voxels selected by that widget is
computed and immediately shown in the 1D transfer function
editor. Initially, the 1D transfer function maps, as visible, all
voxels that are selected by the 2D transfer function widget.
With the help of the 1D histogram, one can then design the 1D
transfer function intuitively. As such, users are provided with a
familiar interface thus providing intuitive interaction. This user
interface adds minimal complexity to the standard 1D and 2D
transfer function editors in existing volume visualization sys-
tems, e.g. Voreen [25] and ImageVis3D [26]. With a 3D trans-
fer function space we are able to leverage the usability of the
user interface, however, we are also interested in extending it
for higher dimensional transfer function spaces in the future.

4. Specific Transfer Function Spaces Used

In addition to the well known 2D gradient magnitude and
scalar value transfer function, we include several recently pro-
posed transfer functions to be used in combinations. Creation
of these transfer functions is generally based on the methods de-
scribed in the respective papers, but with slight modifications,
which are discussed in the following subsections: size-based
transfer functions [3] in Section 4.1, occlusion-based transfer
functions [4] in Section 4.2 and statistical transfer functions [5]
in Section 4.3.

4.1. Size Information Computation

Correa and Ma [3] proposed a three step method to create a
size volume S from an input volume. The three steps are: scale-
space computation, scale detection, and back projection. They
use anisotropic diffusion to create the scale space with better
localization. The classical normalized Laplacian kernel is used
to detect the blobs as local maxima both in spatial and scale do-
main. A back projection step utilizing Shepard’s interpolation
with Wendland polynomials is then conducted for the detected
blob tuple (x,y,z, t).

A single voxel can be part of features with multiple sizes,
however only the largest size value is kept at each voxel, thus
smaller features get masked out by larger ones, which happens
in the brain MRI example shown in Section 5.4. To avoid this
situation, we allow the user to specify an intensity range to com-
pute a scale space specifically for that range.

4.2. Occlusion Information Computation

Correa and Ma [4] suggest using an extended ambient occlu-
sion metric to measure the occlusion of the volume. One can
view the occlusion information ρ as a weighted sample mean
value for a spherical neighborhood with certain radius R cen-
tered at each voxel, which results in an isotropic blurring effect
that does not preserve the boundaries of the structures.

Sometimes, overly smoothed volumes that lose all their
boundary information are not desired , thus we derive a gra-
dient based equation for computing the occlusion information,
inspired by work done by Perona and Malik [27].

For a sphere of radius R, we compute the occlusion informa-
tion of the N voxels xi surrounding the current voxel x as shown
in Equation 6:

mx =
gx

N

N

∑
i=1

xi (6)

gx =
η2

∥▽Ix∥2 +η2 (7)

In Equation 7, gx is a term based on the gradient magnitude of
the current voxel x.

The data set dependent parameter η ∈ R+ handles gradients
of zero magnitude e.g for η ∈ [0.001,0.01], essentially helping
to preserve boundaries of different structures. If η ≥ 1, the filter
behaves similar to a box filter.
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Computing mx is equivalent to convolving the volume with a
spherical filter BR of radius R, and then modulating it with gx:

mx = gx · (BR ∗ Ix) (8)

The complexity of this operation is O(mn), where m = 4
3 πR3 +

1, and thus very costly, since the radius should be large enough
to maximize the variance of the result [4].

This is infeasible in practice, due to its computational com-
plexity. However, since each sample inside the sphere is treated
equally, a box filter of width 2R can be used to approximate the
sphere. Exploiting the separability of convolving with a box
filter and the performance of modern GPUs allows the compu-
tation of mx within seconds. The 3D convolution is then sep-
arated into three consecutive convolutions with a 1D box filter
b2R+1 of width 2R+1, as Equation 9 shows:

mx = gx · {b2R+1 ∗ [b2R+1 ∗ (b2R+1 ∗ Ix)]} (9)

This separation considerably reduces the computation time.
Such an occlusion metric is view-independent and thus can
be pre-computed and stored, and therefore does not affect the
speed of visualization.

4.3. Statistical Properties
We construct the statistical feature space with a procedure

similar to that presented by M. Haidacher et al. [5]. They
propose to grow a sphere over the neighborhood of each voxel
and to compute the following statistical metrics: mean value µ ,
standard deviation σ , skewness as well as kurtosis. It is a multi-
stage process: first, extract statistical metrics, second, conduct
the normality test. If the test is passed, continue with the simi-
larity test. After the similarity test, if the new samples are sim-
ilar to the old ones, we combine the statistical metrics. If any
of the above tests fail or a user defined maximum radius rmax is
reached, the procedure is terminated, otherwise we increase the
neighborhood by one voxel.

Haidacher et al. [5] use the Jarque-Bera test [28] for nor-
mality since it is easily implementable on a GPU. It however
requires a relatively large set of samples in order yield results
of sufficient quality. Therefore, various other normality tests
have been proposed in the literature; we chose D’Agostino’s K-
squared test [29] as a state of the art method. Its robustness with
respect to identical values in the dataset makes it a good fit for
CT and MRI data sets, which can contain large homogeneous
regions.

Utilizing the transformations Z1(
√

b1) and Z2(b2) of the
sample skewness

√
b1 and the sample kurtosis b2, the K-

squared test (Equation 10) is then defined as:

K2 = Z1(
√

b1)
2 +Z2(b2)

2 (10)

K2 is approximately χ2-distributed with 2 degrees of freedom;
we can test its null hypothesis by looking up the χ2-distribution
table. The entry for test level 1−α = 0.999 with a 2 degrees
of freedom in the χ2-distribution table is 13.82. Therefore, the
normality test will be passed if

K2 < 13.82 (11)

If the samples in the spherical neighborhood pass the normal-
ity test, it is necessary to further test whether they have the same
distribution as that of the samples computed in the previous it-
eration. As done by Haidacher et al. [5], Welch’s T -test [30] is
used to compare the similarity of the sample distributions.

5. Results and Discussion

The statistical properties, the occlusion information, and the
size information are all pre-computed on the GPU, and those
volumes are then used in the interactive visualization stage to
define the transfer function space. Users interact with an ex-
tended slice-based volume renderer implemented in OpenGL
and Qt that supports combined 3D transfer functions to explore
and generate final visualizations.

The scoring process is not part of our volume renderer and
is conducted in MATLAB only once for a dataset. The in-
put is a matrix where each of its columns is a property vol-
ume that is flattened into an 1D array. The correlation coeffi-
cient matrix is computed by the MATLAB function corrcoef
which uses Pearson’s correlation. While the MATLAB function
entropy, that implements Equation 5, is applied to compute
the entropy of each property by taking the histograms of the
properties in a column of the input matrix. The number of bins
of the histograms are determined by the number of bits of the
data, e.g. an unsigned 8 bit volume has 256 bins. Finally, Equa-
tion 3 is evaluated for the corresponding row of the major prop-
erty in matrix R and the normalized entropy vector E(Yi)

maxE . The
whole process takes about 10 seconds for each of the examples
shown below.

The following discussion compares 2D gradient magnitude,
2D statistical, 2D occlusion, 2D size with 3D combined statisti-
cal/occlusion, statistical/size, occlusion spectrum/size or statis-
tical/(occlusion, size) transfer functions applied to a synthetic
data set and real world data sets. The combined 3D transfer
functions for each data set were typically designed within 15 to
20 minutes, similar to the time required to design the traditional
2D transfer functions. The synthetic data set models a filled
shell encompassing varying sized spheres; the “Artifix” data set
has been retrieved from the OsiriX DICOM archive [31]. The
back pack and the “Artifix” data sets are CT scans of a back
pack and chest respectively, “CerebrixCrop” is the T1 channel
of an MRI scan of a brain.

The parameters used to create the transfer function spaces
are chosen by trial-and-error on each data set. For the synthetic
dataset and CT datasets are computed with confidence level 0.1
while the MRI dataset with a confidence level 0.001 when gen-
erating the statistical transfer function space. Radius is set to
40 for all datasets when creating the occlusion volumes. The
synthetic dataset is processed with a boundary preserving pa-
rameter η = 1.0 in order to overcome the noisiness whereas all
other datasets use η = 0.005 to preserve the boundary details.
Size property computed for the MRI dataset is limited to the
intensity range [250,500] in order to classify the tumor.

The transfer function combinations shown below are chosen
by applying the algorithm described in section 3.2 with varying
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parameter a. An exception to this are the results shown in in
Figure 2 where the extremely noisy nature makes Equation 3
ineffective.

5.1. Synthetic Dataset

A synthetic dataset was created, as illustrated in Figure 2(a)
in order to mimic a common scenario in real life medical
datasets, such as chest CT scans or head MRI scans, where dif-
ferent structures overlap both spatially and in the scalar values.
Often, the outer structures occlude the inner ones, but they also
can have different sizes. The synthetic dataset contains six dif-
ferent materials: the environment with µ0 = 0.20,σ0 = 0.14,
the middle hull with µ1 = 0.40,σ1 = 0.16, the outer hull and
the upper small inner sphere with µ2 = 0.60,σ2 = 0.11, and
both the remaining larger and smaller inner spheres have µ3 =
0.80,σ3 = 0.13. In addition, low amplitude noise following a
Gaussian distribution has been added across the whole domain
to simulate noise introduced by acquiring a volumetric image
with a scanner.

Various transfer functions have been applied to the synthetic
dataset, as shown in Figure 2. Traditional 2D gradient magni-
tude based transfer functions, as Figure 2(b) illustrates, suffer
severely from the overlapping scalar values in the transfer func-
tion domain. There, features are indistinguishable due to noise,
which makes is hard to separate features based on their gradient
magnitude, as seen in the joint histogram in Figure 2(b).

Occlusion spectrum 2D transfer functions, shown in Fig-
ure 2(c) are able to separate the inner and outer structures based
on their occlusion property as in the transfer function shown in
Figure 2(c). The three inner spheres however cannot be sepa-
rated clearly due to the similarity in their occlusion information
as well as their scalar values. Also, the center of the inner yel-
low region overlaps with all spheres in the occlusion spectrum,
thus causing misclassification.

The size based 2D transfer function applied to the data set
(Figure 2(d)) separates the inner spheres from each other and
the outer rings, however there are classification artifacts at the
top and right part of the green outer ring. The small sphere at
the bottom right cannot be properly separated from the purple
sphere, since they both overlap in their scalar values.

Statistical 2D transfer functions, as demonstrated in Fig-
ure 2(e), are able to separate the overlap in the (µ ,σ) trans-
fer function domain. It is thus possible to classify them using
different properties. However, both the spheres at the lower
center have the same statistical properties, and similarly, the
outermost shell shares the statistical properties with the upper
central sphere, yet they represent different structures.

Supplementing the statistical information with occlusion in-
formation, as shown in Figure 2(f), makes it possible to separate
the inner purple sphere, compared to Figure 2(e). The transfer
function in Figure 2(f) shows that the 1D occlusion histogram
for the highlighted 2D widget can be used to separate the purple
sphere with its low amount of highly occluded voxels from the
green outer shell, which has a higher amount of less occluded
voxels, however the two red spheres at the bottom are not sepa-
rated from each other.

On the other hand, supplementing the statistical information
with size information, as shown in Figure 2(g), makes it possi-
ble to separate the two spheres at the bottom into the cyan small
one and the larger red one, when compared to Figure 2(e). No-
ticeable are the purple artifacts in the green outer shell at the
right side, since that region has a similar feature size compared
to the purple sphere.

Figure 2(h) shows that occlusion and size information to-
gether are able to classify all the features of the data set without
ambiguity. The 1D transfer function associated to each widget
in the 2D statistical transfer function space uses either size in-
formation or occlusion information to further classify the vox-
els selected in the statistical 2D transfer function domain, thus
allowing the user to exploit benefit of either method, while be-
ing able to interact with 1D and 2D transfer functions, instead
of 3D or 4D transfer functions.

5.2. CT Scan of a Chest: “Artifix”

In the chest CT scan “Artifix” (Figure 3), both traditional
2D and combined 3D transfer functions were used to classify
the lung (blue), bones (shades of gray), blood vessels (red),
aorta (dark orange), kidney (brown), the skin (transparent gray).

The gradient magnitude transfer function (Figure 3(a)) fails
to correctly separate the blood vessels and the kidneys from the
bones. Also noticeable is the relatively high amount of noise
distributed across the volume.

The occlusion spectrum (Figure 3(b)) can be used to separate
the kidney from the surrounding tissue. However, the aorta is
similarly classified, since they are overlapping in the occlusion
spectrum. Also details of the lung are lost, since its tissue has
similar occlusion values compared to the surrounding tissue,
due to the intricacy and delicacy of the alveoli and bronchioles.

A statistical transfer function (Figure 3(c)) removes a notica-
ble amount of that noise, but still leaves some areas, such as the
front part of the ribs, and the kidney misclassified, since they
are close with respect to their statistical properties.

Experimentation with the size based transfer function as the
associated transfer function space did not measurably improve
the classification since the relative similarity of the scalar values
in this CT scan mapped them to similar size values.

However combining occlusion information with either a 2D
gradient magnitude transfer function (Figure 3(d)) or a statis-
tical transfer function (Figure 3(e)) increases the ability to cor-
rectly separate the kidneys from the aorta. The fine structures of
the lung’s surface are identifiable, since they have different sta-
tistical properties compared to the surrounding tissues. There
are only slight differences between the combined transfer func-
tions since they are similar without considering occlusion infor-
mation.

5.3. CT Scan of a back pack

The scoring with a = 0.6 conducted on the back pack dataset
with scalar value chosen as the main property, gradient mag-
nitude as the intrinsically associated secondary property re-
sults in: sµ,σ ,ρ,S = [−0.5208,−0.3882,0.2165,−0.1595] sug-
gests that the occlusion volume ρ and size volume S should
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(a) The synthetic dataset (b) 2D gradient magnitude (c) 2D occlusion (d) 2D size

(e) 2D statistical (µ,σ) (f) 3D statistical/occlusion (g) 3D statistical/size (h) 3D statistical/(occlusion,size)

Figure 2: The synthetic dataset was created as mixture of overlapping Gaussian distributions with varying parameters to model a filled shell encompassing varying
sized spheres as shown in a). It has been classified, from left to right, using transfer functions (shown right below the rendered images) based on b) 2D gradient
magnitude, c) 2D occlusion spectrum and d) 2D size based transfer function, e) 2D statistical, f) combined statistical/occlusion transfer function, g) combined
statistical/size transfer function and h) combined statistical/(occlusion, size) transfer function.

be considered for tertiary attributes. Changing the main prop-
erty to mean volume with standard deviation volume as the
secondary attribute gives the scoring for the rest properties:
sx,|▽x|,ρ,S = [−0.4847,−0.2140,0.2153,−0.1679] also hints to
us that the occlusion volume ρ and size volume S should be
used as tertiary attributes.

Figure 4 shows the CT scan of a back pack filled with liquids
(in red, green, blue), a battery (in purple) and a box (in cyan)
classified with various transfer functions.

The 2D transfer functions separate the different liquids to
varying degrees, but they fail to identify the battery properly.
Other features, such as the wires or the small circular shapes
are mapped to the same color yellow (Figures 4(a), 4(b)), or the
same feature is mapped to different colors (Figures 4(c), 4(d)).
Notable is the 2D occlusion transfer function which allows the
extraction of the cyan box but classifies the liquids with less
specificity.

Adding occlusion as the 3rd axis did not yield meaningful re-
sults, since the data set itself has many features which are sim-
ilarly occluded by the clothing articles (showing in transparent
gray) inside the back pack, thus reducing the separability in the
occlusion channel.

Utilizing a size transfer function as the third axis allows the
clear separation of the battery (purple color), the 3D occlu-
sion spectrum/size transfer function (Figure 4(g)) is addition-
ally able to visualize the cyan box, which is difficult to do us-
ing gradient magnitude (Figure 4(e)) and statistical information
(Figure 4(f)) as the 2D transfer function domain. However, all
of the 3D transfer functions have problems in classifying the
wires as features both connected spatially and with respect to
their colors, suggesting further investigations of alternative vol-
umetric attributes as the third axis.

5.4. MRI Scan of a Brain: “CerebrixCrop”
MRI datasets, occurring in clinical and research studies

where separating the brain from the surrounding tissue is of
particular interest, are typically challenging to classify, since
they often contain ubiquitous noise [32]. Figure 5 shows such
a data set containing a tumor in the center of the brain. Trans-
fer functions are applied to classify the brain tissue (in yellow)
and the fluid inside the tumor (in red). Note that although both
features can be shown simultaneously by setting transparency
of the brain, we set the brain to completely transparent in the
second row of images for clear visualizations of the tumor.
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(a) 2D gradient magnitude (b) 2D occlusion (c) 2D statistical (µ,σ)

(d) 3D gradient magnitude/occlusion (e) 3D statistical/occlusion

Figure 3: The chest CT scan “Artifix” classified using transfer functions based on a) 2D gradient magnitude, b) 2D occlusion spectrum, c) 2D statistical, d) combined
3D gradient magnitude/occlusion transfer function and e) combined 3D statistical/occlusion transfer function.

We apply the scoring process with a = 0.6 to
the MRI dataset: set scalar value as primary and
gradient magnitude as secondary yields: sµ,σ ,ρ,S =
[−0.3188,−0.1247,0.1674,−0.0224] meaning that the
occlusion volume ρ and size volume S once again should be
considered for tertiary attributes. Substituting the main attribute
with mean value while standard deviation as the secondary at-
tribute gives sx,|▽x|,ρ,S = [−0.2841,−0.0591,0.1505,−0.0298]
and leads us to the same decision.

Gradient magnitude based 2D transfer functions (Fig-
ure 5(a)) fail to properly separate the brain from the skin, since
they both share similar ranges of scalar values and gradient
magnitudes.

Figure 5(f)demonstrates the inability for the gradient magni-
tude based 2D transfer functions to clearly pull out the tumor,
since similar scalar values and gradient magnitudes appear uni-
versally across the data set.

The occlusion spectrum (Figures 5(b) and 5(g))helps to bet-
ter separate the brain from its surrounding tissues as well as
remove noise with scalar values similar to the tumor. However,
the surface of the brain tissue is still incorrectly classified and
a large amount of noise still appears around the tumor due to
similar occlusion values in these regions.

Statistical transfer functions (Figures 5(c) and
5(h))significantly smooth the data set, making the creases
and recesses of the brain tissue clearly show up, however, noise
that heavily affects the visual quality is still seen across the
data set, especially in Figure 5(h).

Combining the occlusion information with statistical infor-
mation, as shown in Figures 5(d) and 5(i) classifies the brain

tissue properly, but fails to clearly extract the tumor.
However a transfer function combination with two tertiary

attributes, as shown (Figures 5(e) and 5(j)) clearly separates
both the brain tissue and the tumor. The statistical attributes are
used as the primary and secondary attributes, and the occlusion
and size information are uses as the tertiary attributes.

The widget that classifies the yellow brain tissue uses the oc-
clusion attribute to further classify it with the associated 1D
transfer function; however the widget classifying the red tumor
uses the size attribute instead to further remove the noise via its
associated 1D transfer function.

5.5. Multivariate Data set: Hurricane Isabel

One time step (time step 30) of the VisContest 2004 Hurri-
cane Isabel [33] multi-variate data set is used to demonstrate
the generality of our method. The original data set contains 12
attributes, many of these attributes however, are redundant or
contain little amount of information.

Three most salient attributes are selected, namely pressure,
temperature and QVAPOR by evaluating the entropy of each
attribute. The 2D transfer function domain is pressure and tem-
perature. We use QVAPOR as the associated 1D transfer func-
tion. Each different colored widget in the 2D domain uses a
different QVAPOR 1D transfer function . These attributes are
then used to classify features, as shown in Figure 6. The eye
of the hurricane (shown in red) has a lower pressure but higher
temperature than the blue outer bands and lower temperature
compared to the yellow and green spiraling bands. The QVA-
POR allows us to see the spiraling bands in the data set.
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(a) 2D gradient magnitude (b) 2D statistical (µ,σ) (c) 2D size (d) 2D occlusion

(e) 3D gradient magnitude/size (f) 3D statistical/size (g) 3D occlusion spectrum/size

Figure 4: The back pack CT scan classified using transfer functions based on a) 2D gradient magnitude, b) 2D statistical, c) 2D size, d) 2D occlusion, e) combined
3D gradient magnitude /occlusion transfer function, f) combined 3D statistical/size transfer function and g) combined occlusion spectrum and size transfer function.

6. Conclusion and Future Work

In this paper, a transfer function combination method has
been introduced to improve classification results using existing
transfer function spaces, specifically, the scalar/gradient mag-
nitude transfer function space, the statistical transfer function
space, the occlusion transfer function space and the size based
transfer function space. Combinations that have better speci-
ficity than the element transfer functions are selected. A mod-
erate amount of precomputation which has been accelerated us-
ing GPUs and separable convolution filters allows subsequent
interactive design and manipulation of the combined transfer
functions via an intuitive transfer function editor. Synthetic and
scanned data sets were used to demonstrate that combining 2D
transfer functions with 1D transfer functions improves the re-
sults of classification than that from 2D transfer functions.

Several improvements are of interest in the future. The trans-
fer function combinations are selected using the rules described
in section 3.2 to produce the results in the paper, and we hope
to develop a more robust method to automatically choose the
best transfer function combinations.

We would like to develop new metrics and experiment with
transfer function combinations using these metrics. Transfer
function combinations are not necessarily restricted to only one
2D transfer function followed by a single selection from a set of
1D transfer functions. A chain of transfer functions (2D + 1D
+ 1D + ... or 2D + 2D + 1D + 1D + ... or even 2D + 2D + 2D
+ ...) can be applied to a volume although the user interface be-
comes difficult due to the high dimensionality imposed by such
a chain. In order to improve the classification over a specific

region, metric volumes used for further classification steps may
be computed locally from the regions already classified instead
of being precomputed globally.

Our proposed method helps to better classify objects in the
volumes via low-level user interactions, i.e. the user has to have
explicit knowledge about transfer function spaces and has to
manually tune the 3D transfer functions. We would like to de-
velop semantics based high level transfer function design mech-
anisms build upon our frame work: e.g. predefine several trans-
fer functions for objects of interest in a dataset (e.g. bones, skin,
and blood vessels etc. in the CT chest scan) as training data
and use supervised learning to generate initial transfer functions
for similar datasets; or use similar methods proposed in Rezk-
Salama et al. [34]. Ultimately, more information that guides the
user to a quicker and more intuitive classification experience is
the overall future goal.

7. Acknowledgements

We would like to thank the reviewers for helpful com-
ments which improved our manuscript. This publication is
based on work supported by Award No. KUS-C1-016-04,
made by King Abdullah University of Science and Technology
(KAUST), DOE SciDAC:VACET, NSF OCI-0906379, NIH-
1R01GM098151-01.

References

[1] G. Kindlmann, J. Durkin, Semi-automatic generation of transfer functions
for direct volume rendering, in: IEEE Symposium on Volume Visualiza-
tion, 1998, pp. 79–86.

10



Figure 5: The “CerebrixCrop” MRI data set shown with focus on the brain tissue shown as yellow (top row) and a tumor shown in red (bottom row). The following
transfer functions were applied: a,f) 2D gradient magnitude, b,g) 2D occlusion, c,h) 2D statistical, d,i) 3D statistical/occlusion, e,j) 3D statistical/(occlusion,size).

(a) Hurricane Isabel Visualization (b) Hurricane Isabel UI

Figure 6: Visualization of the multi-variate Hurricane Isabel data set using pressure and temperature in the 2D transfer function with different 1D transfer functions
using QVAPOR for each 2D transfer function widget shown in different colors.

[2] M. Levoy, Display of surfaces from volume data, IEEE Computer Graph-
ics and Applications 8 (3) (1988) 29–37.

[3] C.Correa, K.-L. Ma, Size-based transfer function: A new volume ex-
ploration technique, IEEE Transactions on Visualization and Computer
Graphicss 14 (6) (2008) 1380–1387.

[4] C.Correa, K.-L. Ma, The occlusion spectrum for volume classification
and visualization, IEEE Transactions on Visualization and Computer
Graphics 15 (6) (2009) 1465–1472.

[5] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, M. E. Gröller, Volume
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