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Standard particle filtering technique have previously been applied to the problem of fiber tracking by
Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using
sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo
et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white matter tractog-
raphy using diffusion tensor MRI, In: Proc. MICCAI, pp. 435–442]. However, these previous attempts have
not utilised the full power of the technique, and as a result the fiber paths were tracked in a goal directed
way. In this paper, we provide an advanced technique by presenting a fast and novel probabilistic method
for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the weighting
and resampling mechanism of particle filtering. We formulate fiber tracking using a non-linear state
space model which captures both smoothness regularity of the fibers and the uncertainties in the local
fiber orientations due to noise and partial volume effects. Global fiber tracking is then posed as a problem
of particle filtering. To model the posterior distribution, we classify voxels of the white matter as either
prolate or oblate tensors. We then construct the orientation distributions for prolate and oblate tensors
separately. Finally, the importance density function for particle filtering is modeled using the von Mises–
Fisher distribution on a unit sphere. Fast and efficient sampling is achieved using Ulrich–Wood’s simula-
tion algorithm. Given a seed point, the method is able to rapidly locate the globally optimal fiber and also
provides a probability map for potential connections. The proposed method is validated and compared to
alternative methods both on synthetic data and real-world brain MRI datasets.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion tensor MRI (DTI) has become a popular tool for non-
invasive exploration of the anatomical structure of the white mat-
ter in vivo (Basser et al., 1994). It endows each voxel with a 3� 3
symmetric positive-definite matrix, which characterises the local
water diffusion process. It is based on a local Gaussianity assump-
tion concerning the probability of water molecule motion in a
defined time period. White matter fiber tracking or ‘‘tractography”
estimates likely fiber paths by tracing the local tensor orienta-
tions (Mori and van Zijl, 2002; Parker, 2004). In this paper, we pres-
ent a new and fast probabilistic fiber tracking algorithm which
utilises the particle filtering technique and von Mises–Fisher
sampling.
ll rights reserved.
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1.1. Related literature

1.1.1. Fiber tracking
Broadly, the fiber tracking methods described in the literature

can be classified as belonging to two groups. The first group of
methods is based on local line propagation techniques (or stream-
line techniques) (Basser et al., 2000; Lazar et al., 2003; Mori et al.,
1999). Step-by-step, they integrate a fiber pathway from a prede-
fined seed point along the principal diffusion directions, which cor-
respond to the principal eigenvectors of the diffusion tensors. The
main difference among the methods in this group is the way in
which local information is incorporated to locate smooth fiber
paths. For instance, Lazar et al. (2003) use the entire diffusion ten-
sor to deflect the estimated fiber trajectory in the desired direc-
tions. The main drawback of line propagation methods is that
errors accumulate as the propagation takes place over a long
distance.

The second group of methods are based on global optimisation
techniques (Gossl et al., 2002; Parker et al., 2002; Pichon et al.,
2005; Staempfli et al., 2006). Starting from a seed point, they
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attempt to locate an improved estimate of the true fiber pathway
using energy minimisation techniques. For instance, Parker et al.
(2002) apply the fast marching technique to propagate connection
paths determined by the principal eigenvectors of the tensors. Gos-
sl et al. (2002) apply Kalman filtering to track globally optimal
paths, according to a fiber smoothness criterion. Pichon et al.
(2005) determine the optimal path between two voxels by solving
the Hamilton–Jacobi–Bellman equation using dynamic program-
ming. Prados et al. (2006) use Riemannian geometry and control
theory to trace the neural fiber bundles by computing the geodesic
distances between seed and end point locations. More recently,
Fletcher et al. (2007) develop a volumetric approach for quantita-
tively studying region-to-region white matter connectivity from
diffusion tensor MRI. They use the Hamilton–Jacobi equation to
formulate the minimal path problem between two regions.

One common feature of the above methods is that local fiber
orientations are determined in a purely deterministic way. How-
ever, due to both noise (Macovski, 1996) and ambiguities for voxels
where multiple fibers cross or branch (partial volume effects (Alex-
ander et al., 2001)), the local fiber orientations measured by DTI are
not completely reliable. For instance, in the case of partial volume
effects, the diffusion process within voxels is no longer Gaussian.
As a result, the diffusion tensor is an incomplete model of the dif-
fusion signal. A natural way to deal with this problem is to measure
uncertainty of the local fiber orientation measurement probabilis-
tically at each voxel. Jones (2003) quantifies the uncertainties in
the fiber orientations using the bootstrap method and then visua-
lises the orientational field using uncertainty cones.

1.1.2. Probabilistic fiber tracking
As a result, probabilistic fiber tracking methods have received

considerable interest recently as a means of incorporating orienta-
tional uncertainties (Brun et al., 2002; Bjornemo et al., 2002; Beh-
rens et al., 2003, 2007; Friman et al., 2006; Lazar and Alexander,
2005; Parker et al., 2003; Parker and Alexander, 2003, 2005). In-
stead of reconstructing fiber pathways deterministically, they
aim to measure the probability of connectivity between brain
regions.

These methods have two stages. In the first stage, they model
the uncertainty in DTI measurements at each voxel using a proba-
bility density function (PDF) for the fiber orientations (Behrens et
al., 2003; Friman et al., 2006). Behrens et al. (2003) were the first
to formalise the PDF for local fiber orientations using a Bayesian
framework. They present three models for describing the local dif-
fusion process of water molecules, and their models use different
levels of complexity. The parameters of the models are estimated
using a Gibbs sampler. They applied a Markov Chain Monte Carlo
(MCMC) procedure to sample from a single fiber orientation distri-
bution. They then used the set of samples to model the uncertainty
in orientation. Friman et al. (2006) proposed an alternative Bayes-
ian method based on a simplified and more tractable diffusion ten-
sor model. They replace the continuous PDF of fiber orientation by
a set of uniform samples on a unit sphere. However, their PDF does
not consider the uncertainties due to partial volume effects.
Broadly speaking, the diffusion tensor allows the reliable definition
of the principle diffusion direction, which corresponds to the local
fiber orientation. However, in voxels with more complex configu-
rations such as fiber crossings, the orientation conveyed by a
diffusion tensor is ambiguous. To overcome this difficulty, a mul-
ti-tensor (or multi-compartment) extension of the single diffusion
tensor model has been proposed (Tuch et al., 2002; Frank, 2001;
Behrens et al., 2007). The basic idea here is to approximate the dif-
fusion process using a mixture of Gaussian densities (Frank, 2001).
Behrens et al. (2007) determine the complexity of the fiber struc-
ture at each voxel using automatic relevance determination. They
then extend their previous work (Behrens et al., 2003) to deal with
multi-orientations within a voxel by using a multi-compartment
description of the diffusion process. More sophisticated methods
for modeling PDFs of multi-fiber orientations at a voxel have also
been developed for characterising the observed diffusion. For in-
stance, Tuch (2004) describes the observed diffusion for high angu-
lar resolution diffusion imaging (HARDI) using the q-space
framework, which is able to resolve fiber crossings. Tournier et
al. (2004) express the diffusion weighted signal as a spherical con-
volution of the response function. The approximate PDF for fiber
orientations is then recovered using spherical deconvolution.
McGraw et al. (2006) model the PDF for fiber orientations using a
mixture of von Mises–Fisher distributions. They use this model
for segmenting high angular resolution diffusion MRI. Bhalerao
and Westin (2007) build the PDFs from HARDI using a hyperspher-
ical von Mises–Fisher mixture model. They map the fiber orienta-
tion samples to a 5D representation which can avoid the
ambiguities associated with the sign flips of directions in 3D. They
then fit their model using Maximum Likelihood estimation.
Although these sophisticated models can better represent diffusion
weighted signals, new imaging methods require much finer angu-
lar resolution and more scanning time than DTI (often 50 or more
gradient directions are required). Therefore, in this paper, we focus
on estimating the PDF of fiber orientations using the widely
adopted diffusion tensor imaging model.

In the second stage, probabilistic tracking algorithms simply re-
peat a streamline propagation process (typically 1000–10000
times) with propagation directions randomly sampled from the
PDF for fiber orientation. The fraction of the streamlines that pass
through a voxel provide an index of the strength of connectivity
between that voxel and the seed point. By contrast with the first
stage, few methods have been developed to efficiently sample fiber
paths from orientation PDF. The main difference between existing
methods for probabilistic fiber tracking is found in the way that the
PDF for fiber orientation is modeled. Most methods estimate the
connectivity map by sampling directly from the PDF for fiber orien-
tation. For instance, Parker et al. (2003) modeled the uncertainty of
the fiber orientations using the normal distribution, and the
parameters of the distribution is controlled in a heuristic way. They
then sequentially sample fiber paths from the normal distribution.
Parker and Alexander (2003) have further developed their previous
work to deal with multi-fiber crossings. They distinguish between
prolate and oblate tensors using the spherical harmonic parame-
ters of the diffusion weighted signals. They fit the DWIs using both
single and multi-tensor models. The normal distribution is used to
control the uncertainties and sample fiber paths in a efficient way.
Cook et al. (2004) further improved the method by capturing the
orientation errors using the Watson distribution. The advantage
of these methods is that they are able to efficiently sample fiber
paths in a probabilistic way. Although the normal distributions
are easily sample from, the choice is motivated by computational
expediency and it is not clear that it accurately models the sources
of uncertainty present. The main differences between these
sequential sampling methods of Parker et al. (2003), Parker and
Alexander (2003), Cook et al. (2004) and our method are the
weighting and resampling stages of particle filtering. On the other
hand, the uncertainties of the fiber orientations have been modeled
in a theoretically principled Bayesian framework by Behrens et al.
(2003, 2007) and Friman et al. (2006). However, the fiber orienta-
tion distributions are difficult to simulate directly. As a result, the
sampling process is not easily tractable. Thus it is necessary to re-
sort to Markov Chain Monte Carlo methods (Behrens et al., 2003) or
to evaluate the PDF discretely with low angular resolution. One
drawback of these tracking methods is their computational com-
plexity (often more than several hours on a high-end PC (Behrens
et al., 2003; Friman et al., 2006)), and this is unacceptable in
practice.



Fig. 1. Path representation.
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1.1.3. Particle filtering for fiber tracking
Particle filtering was originally investigated for probabilistic fi-

ber tracking by Brun et al. (2002) and Bjornemo et al. (2002). In a
short abstract paper, Brun et al. (2002) were the first to sketch out
the idea of applying the sequential importance sampling and
resampling mechanism (also known as particle filtering) for trac-
tography. Bjornemo et al. (2002) further detailed and developed
the ideas in Brun et al. (2002). Specifically, they discussed in detail
the conceptual model of importance sampling and resampling.
They then construct the uncertainties of fiber orientations using
a Gaussian noise model. Stochastic fiber paths are generated from
the noisy distribution in a goal directed way. Finally, The connec-
tions between the proposed tracking model and the importance
sampling and resampling framework are discussed. Since the
weights of the sampled paths are constant throughout the propa-
gation process, the weighting and resampling technique are not
incorporated into their tracking model.

1.2. Contribution

Developing on the work of Brun et al. (2002) and Bjornemo et al.
(2002), in this paper we present a fast and novel probabilistic
method for white matter fiber tracking based on particle filtering
and von Mises–Fisher sampling. We first formulate fiber tracking
using a non-linear state space model and recursively compute
the posterior distribution using particle filtering (Doucet et al.,
2000, 2001; Gordon et al., 1993). This technique has been success-
fully used in computer vision for visual tracking (Isard and Blake,
1998) and contour extraction (Perez et al., 2001). It provides a
sound statistical framework for propagating a sample-based
approximation of the posterior distribution. There are almost no
restrictions on the type of model that can be used. As a result,
we can model the fiber orientation distributions for prolate tensors
and oblate tensors separately. The proposed tracking model can
capture both smoothness regularity of the fibers and the uncertain-
ties of the local fiber orientations due to both noise and partial vol-
ume effects. Since samples from the posterior path distribution are
maintained at each propagation step, different decision criteria can
be used to identify the optimal fiber. This procedure is similar to
the active testing and tree pruning method for maximum a poste-
riori (MAP) road tracking developed by Geman and Jedynak (1996).
Given a seed point, our method is able to rapidly locate the global
optimal fiber path and also provide a probabilistic connectivity
map between the seed point and all other voxel locations.

Compared to the methods proposed by Brun et al. (2002)
and Bjornemo et al. (2002), we make the following two novel
contributions.

First, our proposed method generates reliable fiber paths by
fully utilising the weighting and resampling technique of particle
filtering. We model the probability density for fiber orientations
in a theoretically justified way. In order to overcome the difficulty
of sampling the theoretical fiber orientation distribution, we simu-
late paths using a simpler approximating distribution (namely the
importance density function) for fiber orientations which is effi-
cient to sample from. We then sequentially evaluate and adjust
the sampled paths according to the true orientation distribution.
In this way, the method achieves both efficiency and accuracy. Sec-
ond, to implement an effective particle filtering algorithm for fiber
tracking, we first apply the von Mises–Fisher distribution to model
the prior and importance density of our tracking process. Fast sam-
pling is realised on the unit sphere and fiber paths are efficiently
generated using the simulation algorithm for the von Mises–Fisher
distribution developed by Ulrich (1984) and Wood (1994).

A preliminary version of the algorithm reported here was first
described in a conference paper (Zhang et al., 2008). However, here
we consolidate the work and expand the description of the meth-
od. Moreover, we provide additional qualitative and quantitative
results to validate the method. The outline of the paper is as fol-
lows. In Section 2, we first formally develop the global fiber track-
ing model based on a non-linear state space model, and we also
show how particle filtering can be used to recursively compute
the posterior distribution, so as to compute optimal fiber paths
and a probabilistic connectivity map. Section 3 provides the model
ingredients necessary to implement the global tracking technique
described in Section 2. Specifically, we describe how to construct
the observation density, the prior density, the importance density
function and the simulation for von Mises–Fisher distribution. In
Section 4, we evaluate both qualitatively and quantitatively the
performance of the algorithm on synthetic data and real-world dif-
fusion MRI datasets. We also compare the results of our method
with those obtained using alternative methods described else-
where in the literature. Section 5 concludes the paper and dis-
cusses directions for future research.
2. Tracking algorithm

The problem of fiber tracking from a 3D diffusion MRI volume is
to extract the most likely fiber pathway from a predefined seed
point. Contrary to the standard tracking problem where local infor-
mation is gathered as time progresses, we collect the whole set of
data before tracking begins. Thus, at each step of propagation, we
set the observation set as the data visible only from the current po-
sition. In this sense, the fiber tracking problem is similar to the
contour extraction (Perez et al., 2001) and road tracking (Geman
and Jedynak, 1996) in computer vision. However, it is a more chal-
lenging problem because there are numerous fiber paths in white
matter that exhibit crossings and dispersion.

We formulate the fiber tracking problem using a state space
model. Given the prior probability densities that characterise the
properties of the expected fiber paths and the observation densi-
ties that characterise the uncertainty of local fiber orientations, a
posterior distribution of the target fiber can be estimated. Because
of the complex geometry of the fiber paths and the various uncer-
tainties of the orientation measurements, both the prior density
and the observation density are non-Gaussian. Thus, standard lin-
ear state space techniques such as the Kalman filter are inappropri-
ate here, and a non-linear filter is necessary. In contrast to the work
of Gossl et al. (2002) which used the Kalman filter to locate the
optimal path with regard to smoothness constraint for the fibers,
our method deals with both smoothness regularity and uncertain-
ties of fiber orientations induced by noise and partial volume
effects.

2.1. Global tracking model

A white matter fiber path P can be modeled as a sequence of
points in the image space X � R3, i.e. Pnþ1 ¼ ðx0; x1; . . . ; xnþ1Þ, as
shown in Fig. 1. Thus, commencing from a seed point x0, the pro-
gressive growth of a path in discrete time can be described as

xiþ1 ¼ xi þ qiv̂i; ð1Þ
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where qi and v̂i are, respectively, the step size and the direction of
propagation (unit vector) at step i. As with most previous methods,
we set the step size to be a constant, i.e. qi ¼ q; i ¼ 0; . . . ;n. Thus,
the dynamics of path growth is only determined by the propagation
directions v̂i. In the following, we denote a path as a sequence of
unit vectors Pnþ1 ¼ v̂0:n ¼ fv̂0; . . . ; v̂ng. Let Y be the set of observa-
tions or image data of a 3D diffusion weighted imaging (DWI) vol-
ume. The image data observed at the location indexed i, v̂i, is
yi ¼ Yðv̂iÞ ¼ YðxiÞ, i.e. Yðv̂iÞ refers to the DWI information observed
at the starting point of unit vector v̂i connecting xi and xiþ1 (see
Fig. 1). Our goal is to propagate a sequence of unit vectors
fvi; i ¼ 0;1; . . . ;ng that best estimate the true fiber path based on
the conditional prior density pðv̂iþ1jv̂0:iÞ and the conditional obser-
vation density pðYjv̂0:iÞ.

We assume that the tracking dynamics forms a Markov chain,
so that

pðv̂iþ1jv̂0:iÞ ¼ pðv̂iþ1jv̂iÞ: ð2Þ

This means the new state is conditioned directly only on the imme-
diately preceding state, and is independent of the past. Thus, the
prior for the fiber path is

pðv̂0:nÞ ¼ pðv̂0Þ
Yn

i¼1

pðv̂ijv̂i�1Þ: ð3Þ

We also assume that the observations or diffusion measurements
(DWI) are conditionally independent given v̂0:n, i.e.

pðYjv̂0:nÞ ¼
Y
r2X

pðYðrÞjv̂0:nÞ; ð4Þ

where X is the set of voxels of the image volume. Additionally, if we
assume that the diffusion measurement at a point does not depend
on any points in the history of the path, then pðyijv̂0:iÞ ¼ pðyijv̂iÞ.
Based on Eq. (3) and the assumptions, the posterior distribution
pðv̂0:njYÞ can be expanded as

pðv̂0:njYÞ ¼ pðv̂0jYÞ
Yn

i¼1

pðv̂ijv̂i�1;YÞ: ð5Þ

Applying Bayes theorem, we have

pðv̂ijv̂i�1;YÞ ¼
pðyijv̂iÞpðv̂ijv̂i�1Þ

pðyiÞ
: ð6Þ

In our tracking model we do not assume any prior information
about the diffusion measurements (DWI), thus we can simply con-
sider pðyiÞ as a fixed regularity factor of the system. As a result, we
can write

pðyiÞ ¼
Z

pðyijv̂iÞpðv̂ijv̂i�1Þdv̂i: ð7Þ

Most previous methods reported in the literature (Behrens et al.,
2003, 2007; Parker et al., 2003; Parker and Alexander, 2003) for
probabilistic fiber tracking estimate the posterior pðv̂0:njYÞ by
sampling 1000–10000 streamline paths from the conditional obser-
vation density pðyijv̂iÞ. However, the density pðyijv̂iÞ is often compli-
cated, thus the sampling is difficult and time consuming (Behrens et
al., 2003, 2007). Moreover, these methods do not take into account
the smoothness constraint for fibers. On the other hand, Friman et
al. (2006) estimate the posterior by sampling from pðv̂ijv̂i�1;YÞ. This
sampling is again difficult and requires the computation of the inte-
gral in Eq. (7) over the new state. To avoid these difficulties, Friman
et al. discretise the problem using a finite set of several thousand
directions for propagating paths from v̂i�1 to v̂i. Thus, sampling
the discretised version of pðv̂ijv̂i�1;YÞ becomes feasible, and the
integral becomes a sum. In addition to introducing errors, this dis-
cretised sampling is still time consuming, since each discretised
direction must be evaluated at all locations in the volume. More-
over, simple sequential sampling methods may degenerate as the
number of propagation steps becomes large (Doucet et al., 2001).

2.2. Recursive posterior using particle filtering

We wish to estimate the posterior distribution iteratively in
time. By inserting Eq. (6) into Eq. (5), we have

pðv̂0:njYÞ ¼ pðv̂0jYÞ
Yn

i¼1

pðv̂ijv̂i�1Þ
Yn

i¼1

pðyijv̂iÞ
pðyiÞ

; ð8Þ

where pðv̂0jYÞ is predefined. The modeling of the transition proba-
bility pðv̂ijv̂i�1Þ and the distribution pðyijv̂iÞ will be detailed in the
next section of this paper. We recast the problem of tracking the ex-
pected fiber path as that of approximating the maximum a Posteri-
ori (MAP) path from the posterior distribution.

It is straightforward to obtain the following recursive formula
for the posterior from Eq. (8)

pðv̂0:iþ1jYÞ ¼ pðv̂0:ijYÞ
pðv̂iþ1jv̂iÞpðyiþ1jv̂iþ1Þ

pðyiþ1Þ
: ð9Þ

Since the denominator of this expression requires the evaluation of
a complex high-dimensional integral, it is infeasible to locate the
maximum likelihood path analytically. In conjunction with the
methods described above, we evaluate the posterior using a large
number of samples which efficiently characterise the required pos-
terior. Thus, statistical quantities, such as the mean, variance and
maximum likelihood, can be estimated using the sample set. Since
it is seldom possible to obtain samples from the posterior directly,
we use particle filtering (sequential Monte Carlo technique) to
recursively compute a finite set of sample paths from the posterior
based on Eq. (9).

To sample a set of K paths, we place K particles at the starting
point of the path and allow them to propagate as time progresses.
Given the states of the set of particles fv̂ðkÞ0:i ; k ¼ 1; . . . ;Kg at time i,
the process of sequentially propagating the particles to the next
time step iþ 1 can be described in three stages. These are referred
to as prediction, weighting and selection and described in detail in
the following paragraphs. Let pðv̂0:ijYÞ be a so-called importance
function which has a support including that of the posterior
pðv̂0:ijYÞ. For our sequential importance sampling, suppose that
we choose an importance function of the form (Doucet et al., 2000)

pðv̂0:njYÞ ¼ pðv̂0jYÞ
Yn

i¼1

pðv̂ijv̂i�1;YÞ: ð10Þ

In the first prediction stage, the simulated path v̂ðkÞ0:i with index k is
grown by one step to be v̂ðkÞ0:iþ1 through sampling from the impor-
tance function pðv̂ðkÞiþ1jv̂

ðkÞ
i ;YÞ. The new set of paths is generally not

an efficient approximation of the posterior distribution at time
iþ 1. Thus, in the second or weighting stage, we measure the reli-
ability of the approximation using a ratio, referred to as the impor-
tance weight, between the true posteriori and its approximation.
The importance weight is given by

wðkÞiþ1 ¼
pðv̂ðkÞ0:iþ1jYÞ

pðv̂ðkÞ0:i jYÞpðv̂
ðkÞ
iþ1jv̂

ðkÞ
i ;YÞ

: ð11Þ

We are more interested in the normalised importance weights, gi-
ven by

~wðkÞiþ1 ¼
wðkÞiþ1PK
l¼1wðlÞiþ1

: ð12Þ

Inserting Eqs. (9) and (11) into the above expression, we have the
proportionality
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~wðkÞiþ1 / ~wðkÞi

pðv̂ðkÞiþ1jv̂
ðkÞ
i Þpðyiþ1jv̂

ðkÞ
iþ1Þ

pðv̂ðkÞiþ1jv̂
ðkÞ
i ;YÞ

: ð13Þ

The choice of importance function plays an important role in deter-
mining the performance of particle filtering. This choice will be de-
tailed in the next section of this paper. At this point the resulting
weighted set of paths provides an approximation of the target pos-
terior. However, the distribution of the weights ~wðkÞiþ1 may become
skewed as time increases. The purpose of the final or selection stage
is to avoid this degeneracy. We measure the degeneracy of the algo-
rithm using the effective sample size Neff introduced in Liu (1996),

Neff ¼
1PK

k¼1ð ~w
ðkÞ
iþ1Þ

2
: ð14Þ

When Neff is below a fixed threshold Ns, then resampling procedure
is used (Doucet et al., 2001; Gordon et al., 1993). The key idea here
is to eliminate the paths or particles with low weights ~wðkÞiþ1 and to
multiply offspring particles with high weights. We obtain the
surviving particles by resampling K times from the discrete approx-
imating distribution according to the importance weight set
f ~wðkÞiþ1; k ¼ 1; . . . ;Kg.

Both fiber reconstruction and connectivity map computation
can be easily accomplished using the discrete distribution of the
posterior conveyed by the importance weight set. The MAP esti-
mate of the true fiber path from starting point x0 is the path with
the maximal importance weight. In order to compute the connec-
tivity map, the algorithm records the full tracking history of all the
particles at each time step. The probability of connectivity between
x0 and a specific voxel is computed as the fraction of particles that
pass through that voxel.

2.2.1. Relationship to alternative tracking methods
Here, we analyse in detail the relationship between our method

and the alternative method proposed by Brun et al. (2002) and
Bjornemo et al. (2002). Generally speaking, the two methods are
developed in rather different settings. Our method is formulated
using a non-linear state space model for tractography, and uses
particle filtering as a natural tool for finding the posterior distribu-
tion of the fiber paths. By contrast, the method in Brun et al. (2002)
and Bjornemo et al. (2002) is built on the vanilla particle filtering
technique given in Liu et al. (2001). They propose a so-called rough
tracking model using the particle filtering technique. The weakness
of their method is that they do not incorporate the weighting and
resampling steps of particle filtering in their tracking method and
the proposed tracking method works in a goal directed way.

More specifically, Bjornemo et al. (2002) proposed the following
weighting scheme for sampling

wiþ1 ¼ wi
piðxi�1Þpiðxijxi�1Þ

pi�1ðxi�1Þpiðxijxi�1Þ
: ð15Þ

The model assumed for piðxijxi�1Þ is based on Gaussian noise. Addi-
tionally, it is assumed that piðxijxi�1Þ ¼ piðxijxi�1Þ and
piðxi�1Þ ¼ pi�1ðxi�1Þ. As a result, wiþ1 ¼ wi for all the propagation
steps and resampling therefore becomes unnecessary.

Compared to the method in Brun et al. (2002) and Bjornemo et
al. (2002), we use the weighting scheme given in Eq. (13). We sam-
ple from the importance density pðv̂ðkÞiþ1jv̂

ðkÞ
i ;YÞ which is con-

structed using a von Mises–Fisher model. The importance density
is fitted in a simple way to estimate the observation density. As
we will show in the following, our observation pðyijv̂iÞ is based
on a theoretically justified noise model. Unfortunately, it is intrac-
table to make samples directly. Although we make samples from a
simplified and more tractable importance distribution, we evaluate
and recursively adjust the samples according to their true distribu-
tion using the weighting and resampling mechanism of particle
filtering. As a result, the sampled fiber paths are simulated so as
to reliably reflect the theoretical posterior pðv̂0:iþ1jYÞ given in
Eq. (9).

3. Algorithm ingredients

In this section, we give the details of the local ingredients of the
global tracking model using particle filtering.

3.1. Observation density

We commence by showing how to model the observation den-
sity pðyijv̂iÞ, which encodes the uncertainty in local fiber orienta-
tion due to both noise and partial volume effects. Our
observation density function is constructed using a single diffusion
tensor model. Despite its weakness in capturing complex fiber
structures, DTI is still the most widely used diffusion MRI modality.
Formally, the diffusion weighted intensity sj is related to the diffu-
sion tensor D by the Stejskal–Tanner equation (Basser et al., 1994)

sj ¼ s0 expð�bjĝT
j DĝjÞ; ð16Þ

where gradient direction ĝj and the b-value bj are the scanner
parameters for data acquisition, and, s0 is the intensity with no dif-
fusion gradients applied.

Let k1 P k2 P k3 P 0 be the decreasing eigenvalues of diffusion
tensor D and ê1; ê2; ê3 be the corresponding normalized eigenvec-
tors. The degree of anisotropy of water diffusion at a voxel can
be characterised using the fractional anisotropy (FA) (Basser and
Pierpaoli, 1996) of the diffusion tensor D. We can classify the diffu-
sion tensors in white matter into two groups. For prolate tensors,
k1 > ðk2 � k3Þ, and, for oblate tensors, ðk1 � k2Þ < k3. Tensor classi-
fication can be estimated using the prolate shape metric proposed
by Westin et al. (2002), i.e.

cl ¼
k1 � k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 þ k2

2 þ k2
3

q : ð17Þ

In this paper, we distinguish prolate tensors and oblate tensors by
using a threshold s ¼ 0:25.

In the case of prolate tensors (cl > s), it can be assumed that the
single dominant diffusion direction, ê1, is in the direction of the
underlying fiber orientation. The modeling of our prior distribution
for prolate tensors is based on the work of Anderson (2005), Alex-
ander (2005) and Friman et al. (2006). Borrowing ideas from
Anderson (2005), we assume that the prolate diffusion tensor
within a voxel is a single axially symmetric tensor. Let us set up
a local coordinate system for the diffusion tensor D so that it can
be written as a diagonal matrix diagðk?; k?; kkÞ where the axis cor-
responding to kk is associated with the fiber orientation. In spher-
ical coordinates, let h be the polar angle from the kk-axis and w be
the azimuth angle from one of k?-axis. Then, a gradient direction ĝj

with ðh;wÞ has local coordinates gðh;wÞ ¼ ½sin h cos w; sin h sin w;
cos h�. Thus, diffusion along ĝj is

ĝT
j Dĝj ¼ gðh;wÞ � diagðk?; k?; kkÞ � gðh;wÞT ¼ k? þ cos2 h � ðkk � k?Þ:

ð18Þ
Suppose the trace of the diffusion tensor trðDÞ is known and varies
unsignificantly over the white matter. The mean of the three main
diffusivities is �k ¼ trðDÞ=3, and as a result kk ¼ 3�k� 2k?. Let v̂ be
the true fiber orientation, then cos h ¼ v̂ � ĝj. Therefore, Eq. (18)
can be written as

ĝT
j Dĝj ¼ k? þ 3ðv̂ � ĝjÞ2ð�k� k?Þ; ð19Þ

which is equivalent to the constraint tensor model of Alexander
(2005) and Friman et al. (2006). By inserting Eq. (19) into Eq.
(16), we have
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sj ¼ s0 exp½�bjðk? þ 3ðv̂ � ĝjÞ2ð�k� k?ÞÞ�: ð20Þ

Here, the intensity measured along any gradient direction is subject
to two unknown parameters, i.e. v̂ and k?.

Due to noise, the intensity uj in the DWI measured by the scan-
ner is a noisy observation of the true signal sj. It is well known that
the noise in MRI can be described accurately by a Rician distribu-
tion Salvador et al. (2005). Salvador et al. (2005) showed that the
error distribution conforms closely to a normal distribution with
a zero-mean and standard deviation equal to the inverse of the sig-
nal-to-noise ratio (SNR), i.e. �j ¼ logðujÞ � logðsjÞ � Nð0;.�1

j Þ, where
.j ¼ sj=rj is the SNR. Let the intensities observed at voxel i be
yi ¼ fu0;u1; . . . ;uMg where M is the number of gradient directions
used in data acquisition. Following the idea of Friman et al.
(2006), we setup the observation density at voxel i for prolate ten-
sors by multiplying the error distribution over all gradient direc-
tions of the DWIs, i.e.

pðyijv̂iÞ ¼
YM
j¼1

Nð0;.�1
j Þ

¼
YM
j¼1

.jffiffiffiffiffiffiffi
2p
p exp �

.2
j ðlog uj � log sjÞ2

2

" #
; ð21Þ

where sj is given by Eq. (20). To find the observation density of the
variable v̂i for fiber orientations, we need to solve for three un-
known parameters, i.e. �k ¼ trðDÞ=3, k? and .j, in Eq. (21). The value
of trðDÞ and k? can be estimated using the method in (Anderson,
2005). Here, we simply set trðDÞ to be the trace of the diffusion ten-
sor D estimated using the linear least squares estimation (Basser et
al., 1994), and set k? ¼ ðk2 þ k3Þ=2. The SNR is estimated using the
weighted least squares method in (Salvador et al., 2005). Panels
(a) and (c) of Fig. 2 show two examples of the fiber orientation dis-
tribution calculated using Eq. (21). The figure shows that the orien-
tation distribution of a prolate tensor is concentrated when its FA
and cl are both relatively large.

In the case of oblate tensors (cl 6 s), the dominant direction of
diffusion is ambiguous and Eq. (21) is inappropriate. It is possible
that diffusion in the plane defined by ê1 and ê2 contains two or
more significant non-collinear diffusion directions, each corre-
sponding to a separate fiber tract. This situation may be indicative
of fiber crossings and branchings, a well-known challenge in the
analysis of DTI. In this case, we set up a local coordinate system
with ê3 as the Z axis and represent the fiber orientation v̂ in spher-
ical coordinates. Let h0 be the polar angle from the ê3-axis, i.e.
h0 ¼ arccosðv̂ � ê3Þ, and w0 be the azimuth angle (relative to an arbi-
trary reference direction in the plane spanned by ê1 and ê2). The
vector v̂ is predominantly distributed on the plane spanned by ê1

and ê2. Hence, we choose the distribution of the polar angle h0 to
be normal with mean p=2 and standard deviation r. The azimuth
w0 is assumed to have a uniform distribution over the interval
Fig. 2. Example of the observation density of three tensors from the brain white ma
FA ¼ 0:3737; cl ¼ 0:3297, (c) an oblate tensor FA ¼ 0:7115; cl ¼ 0:2157. For voxels wi
orientation distribution. For voxels with oblate tensors, fiber orientations are focused on
½0;2p�. Thus, our fiber orientation distribution for oblate tensors
is given by

pðyijv̂Þ ¼
1

r
ffiffiffiffiffiffiffi
2p
p exp �ðarccosðv̂ � ê3Þ � p=2Þ2

2r2

" #
� 1
2p

: ð22Þ

Here, ê3 is the eigenvector of the diffusion tensor D estimated using
linear least squares. Panel (c) of Fig. 2 shows an example of the
observation density of the fiber orientation for an oblate tensor in
white matter.

3.2. Prior density

The state transition probability pðv̂iþ1jv̂iÞ specifies a prior distri-
bution for the change in fiber direction between two successive
steps. Here, we adopt a model of the prior density based on the
von Mises–Fisher (vMF) distribution over a unit sphere. This is
one of the simplest parametric distribution for directional data
(Mardia and Jupp, 2000).

For a d-dimensional unit random vector x, the probability den-
sity function for the vMF distribution is given by

fdðx;l;jÞ ¼ jd=2�1

ð2pÞd=2Id=2�1ðjÞ
expðjlT xÞ; ð23Þ

where j P 0, klk ¼ 1, and Id=2�1ð�Þ denotes the modified Bessel
function of the first kind and order d=2� 1. The density fdðx;l;jÞ
is parameterised by the mean direction vector l and the concentra-
tion parameter j. The greater the value of j the higher the concen-
tration of the distribution around the mean direction l. In
particular, when j ¼ 0, the distribution is uniform over the sphere,
and as j!1, the distribution tends to a point density. The distri-
bution is rotationally symmetric around the mean l, and is unimo-
dal for j > 0.

In our case, the directions are defined on a two directional unit
sphere in R3, i.e. d ¼ 3. We choose to model the prior state transi-
tion probability using the vMF distribution with mean v̂i and con-
centration parameter j, i.e.

pðv̂iþ1jv̂iÞ ¼ f3ðv̂iþ1; v̂i;jÞ: ð24Þ

The value of the concentration parameter j controls the smooth-
ness regularity of the tracked paths. The value of j is set manually
to optimally balance the prior constraints on smoothness against
the evidence of viþ1 observed from the image data. In our real-world
experiments, we set j ¼ 30.

3.3. Importance density function

As pointed out by Doucet et al. (2000), the optimal importance
density, which minimises the variance of the importance weight
~wiþ1 conditional upon v̂iþ1 and Y, is pðv̂iþ1jv̂i;YÞ. However, as noted
tter. (a) a prolate tensor with FA ¼ 0:9299; cl ¼ 0:9193, (b) a prolate tensor with
th prolate tensors, the larger the value of FA and cl , the more focused the fiber

the plane spanned by the two leading eigenvector.
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above, the optimal density suffers from two major drawbacks. In
our case it is both difficult to sample from pðv̂iþ1jv̂i;YÞ and to eval-
uate the integral analytically over the new state. Thus, our aim is to
devise a suboptimal importance function that best represents
pðyiþ1jv̂iþ1Þpðv̂iþ1jv̂iÞ subject to the constraint that it can be sampled
from in a straightforward manner.

A popular choice is to use the prior distribution as the impor-
tance function, i.e

pðv̂iþ1jv̂i;YÞ ¼ f3ðv̂iþ1; v̂i;jÞ: ð25Þ

The von Mises–Fisher distribution in Eq. (24) can be efficiently sam-
pled from using the simulation algorithm developed by Wood
(1994). In this case, v̂iþ1 is predicted from v̂i and the importance
weight is updated using

~wtþ1 ¼ ~wtpðyiþ1jv̂iþ1Þ: ð26Þ

However, the prior importance function is not particularly efficient.
Since no observational information is used, the generated particles
are often outliers of the posterior distribution. As a result, the
weights may exhibit large variations and the results of estimation
may be poor. Indeed, if the diffusion tensor at v̂i is prolate, then
the movement to the state viþ1 is mainly attributable to the fiber
orientation distribution. Thus, the posterior distribution is more
strongly influenced by the observation density. For prolate tensors,
we believe that the observation density in Eq. (21) is a good choice
for the importance function. However, it is difficult to sample from
such a density function.

To overcome this problem, we model the observation density in
Eq. (21) using the von Mises–Fisher distribution. Since we use an
axially symmetric tensor model, the distribution of fiber orienta-
tions in Eq. (21) is also rotationally symmetric around the direction
of largest probability, as shown in Fig. 2. We therefore use the lead-
ing eigenvector, êi

1, of the diffusion tensor Di at v̂i estimated using
the linear least squares as the mean direction of the fiber orienta-
tion distribution. We have found experimentally that the leading
eigenvector êi

1 of Di is almost identical to the direction of maxi-
mum probability for the distribution in Eq. (21). This is based on
a test of 1000 prolate tensors from the brain MRI dataset described
later in Section 4.2. The average difference between the two direc-
tions is less than 2�. Another issue we need to address it to select
the concentration parameter mi at each state v̂i. An accurate solu-
tion is to fit the von Mises–Fisher distribution to the observation
distribution in Eq. (21) using the algorithm described in (Hill,
1981). However, this will significantly increase the computational
complexity of the algorithm, which is one of the advantage of our
algorithm over other methods such as those described in (Behrens
et al., 2003) and (Friman et al., 2006). To overcome this problem,
we sample a number of prolate tensors with different FA values
from the MRI dataset. We then fit the concentration parameter mi

to the observation density in Eq. (21) for each of these tensors
using Hill’s algorithm (Hill, 1981). Fig. 3 shows the concentration
parameter mi as a function of the FA of prolate tensors. The figure
reveals that the relationship between the concentration parameter
and the tensor FA is empirically well described by using an expo-
nential function, i.e.

mi ¼ aþ exp
FAðDiÞ2

c2

 !
; ð27Þ

where a and c are estimated from the above sampled fittings. More-
over, for particle filtering it is not necessary that the importance
density is identical to the observation density. Therefore, for prolate
tensors we set the importance density as

pðv̂iþ1jv̂i;YÞ ¼ f3ðv̂iþ1; êi
1; miÞ; ð28Þ
where mi is estimated from FA using Eq. (27). For oblate tensors,
since the observation density in Eq. (22) is wide, in this case we still
use the prior given in Eq. (25) as the importance density.

3.4. Simulation of von Mises–Fisher distribution

The von Mises–Fisher distribution can be efficiently sampled
from using the simulation algorithm developed by Ulrich (1984),
which is further improved by Wood (1994). Ulrich’s algorithm is de-
signed for a general group of distributions on unit d-spheres, includ-
ing the von Mises–Fisher distribution. Here, we discuss the ideas of
Ulrich (1984) and Wood (1994) which are necessary for implement-
ing our proposed tracking method. Ulrich (1984) observed that if we
sample a unit vector V from the ðd� 1Þ-dimensional sphere and
sample a scalar random variable from the density

gðxÞ ¼ ð1�w2Þðm�3Þ=2 expðjwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðj=2Þd�1

q Id=2�1C
d� 1

2

� �
; ð29Þ

then the concatenated unit vector X ¼ ðð1�WÞ1=2VT ;WÞT has a von
Mises–Fisher distribution. Therefore, simulating the von Mises–
Fisher distribution can be solved by simulating the density gðxÞ.
However, it is still intractable to sample from gðxÞ directly. To over-
come this problem, the acceptance–rejection technique is used to
develop an algorithm that makes samples from Eq. (29) by using
the following envelop density

eðx; qÞ ¼ 2qðd�1Þ=2

Bððd� 1Þ=2; ðd� 1Þ=2Þ �
ð1� x2Þðd�3Þ=2

½ð1þ qÞ � ð1� qÞx�d�1 ; ð30Þ

where Bðd�1
2 ; d�1

2 Þ ¼
Cðd�1Þ

Cðd�1
2 ÞCð

d�1
2 Þ

is the so-called Beta function. To

maximise the acceptance ratio gðxÞ=eðx; qÞ, q ¼

ð�2jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 þ ðd� 1Þ2

q
Þ=ðd� 1Þ. As a result, simulation of von

Mises–Fisher distribution is achieved by sampling from eðx; qÞ fol-
lowing the standard acceptance–rejection method. According to
the Monte Carlo evaluation performed by Ulrich (1984), if generating
a sample from a normal distribution takes CPU time t0, then in our
case d ¼ 3 it requires CPU time 4t0 � 7t0 to sample a unit vector from
the vMF distribution. This is sufficiently efficient for us to sequen-
tially sample fiber paths from the von Mises–Fisher distribution.

3.5. Algorithm outline

To summarise, the iteration steps of the algorithm are as
follows:



Fig. 4. (a) Synthetic data consisting of a cylinder and a sample slice with a zoomed view. (b) Tracked results of our method (MAP path), streamline method (FACT) (Mori et al.,
1999) and the Friman method (Friman et al., 2006) under 10% noise. (c) A snapshot of t
under 25% noise. (e) A snapshot of the sampled paths of our method at propagation ste
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	 given K particles at step i: v̂ðkÞ0:i ; k ¼ 1; . . . ;K
	 compute diffusion tensor DðkÞi for each particle k using linear least square

fitting
	 Prediction: for k ¼ 1; . . . ;K
� if DðkÞi is a prolate tensor, sample v̂
ðkÞiþ1 according to Eq. (28)
� if DðkÞi is a oblate tensor, sample v̂
ðkÞiþ1 according to Eq. (25)

	 Weighting: for k ¼ 1; . . . ;K
� if prolate tensor, compute ~wðkÞiþ1 from Eq. (13) using Eqs. (21), (24) and (28)
� if oblate tensor, compute ~wðkÞiþ1 from Eq. (13) using Eqs. (22), (24) and (25)
� normalise all these weights

	 Selection: evaluate Neff using Eq. (14).
� if Neff P Ns , then for k ¼ 1; . . . ;K , v̂ðkÞiþ1 ¼ v̂
ðkÞiþ1

� if Neff < Ns , then for k ¼ 1; . . . ;K , sample an index zðkÞ from discrete dis-
tribution f ~wðkÞiþ1gk¼1;::;K , and set v̂ðkÞiþ1 ¼ v̂
ðzðkÞÞiþ1 ; ~wðkÞiþ1 ¼ 1=N
he sampled paths of our method at propagation step 300 of case in (b). (d) Results
p 300 of case in (d).
4. Experimental results

We have evaluated our algorithm both on synthetic tensor
fields and real-world MRI brain datasets. We have also qualita-
tively and quantitatively compared the results of our method with
those obtained using the streamline method (Mori et al., 1999) and
the probabilistic tracking method of Friman et al. (2006). Since our
particles propagate in a continuous domain, an interpolation issue
arises for diffusion data that is acquired only on a discrete grid.
Here, we use the trilinear interpolation method introduced in
(Zhukov and Barr, 2002). This method is computationally inexpen-
sive and can preserve the positive-definiteness on the diffusion
tensors.
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4.1. Synthetic dataset

We commence by evaluating the performance of the algorithm
on synthetic tensor fields. Each of the datasets used in this section
contain 128� 128� 40 voxels, have an in-plane resolution of
2� 2 mm and a slice thickness of 2 mm. The procedure for gener-
ating synthetical additive noise is as follows. Suppose that the min-
imum and maximum image scalar values are ul and uh. We refer to
the noise level as being r%, if the standard deviation of the distri-
bution from which the noise is sampled is rr ¼ r

100 ðuh � ulÞ. For
Fig. 5. (a) Synthetic ground truth fiber bundle. (b) A zoomed portion of the image in (a)
reconstructed fiber path by fiber tracking algorithms. (d) Mean error comparison of the
method (Friman et al., 2006) under different levels of Rician noise.
each voxel, a noise value is sampled from an appropriate distribu-
tion (Rician in our case) with zero-mean and variance r2

r , and then
added to the intensity value of that voxel.

Our first example aims to qualitatively demonstrate the robust-
ness of the algorithm under the influence of noise. To do this, we
first generate a noise-free synthetic tensor field. The data contains
a single cylinder, and the principal diffusion directions of the vox-
els within the cylinder form a concentric vector field, as shown in
panel (a) of Fig. 4. Each voxel is visualised by an ellipsoid whose
principal axes are the three orthogonal eigenvectors of the tensor,
. (c) Illustration of error measurement between the ground truth fiber path and the
results of our method with those of FACT algorithm (Mori et al., 1999) and Friman
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and the radii of the ellipsoid along the axes are determined by the
magnitude of the corresponding eigenvalues. Then, we add differ-
ent levels of noise to the tensor field. The proposed particle filter
algorithm is then used to track the global optimal fiber (MAP path)
from a seed point using 1000 particles for 650 propagation steps
with step size 1 mm. Our result is compared with that obtained
using the standard local streamline method (FACT) (Mori et al.,
1999) and the Bayesian method of Friman et al. (2006). For Fri-
man’s method, we sample 1000 paths commencing from the seed
point using the reported discrete sampling technique with 2562
predefined directions on the unit sphere, and select the path with
maximal probability as the optimal fiber. The resulting optimal fi-
ber path for each of the three methods together with the ground
truth path are shown in subfigures (b) and (d) of Fig. 4. Subfigures
(c) and (e) show the trajectories of the particles obtained using our
method at propagation step 300 for the results in subfigures (b)
and (d), respectively. The figure shows that under relatively mild
levels of noise (10% noise) both our method and Friman’s method
reconstruct the true fiber path quite well. However, our method
runs significantly faster than Friman method. For instance, the
MATLAB implementation of our method takes less than 100 sec-
onds for 1000 samples to propagate for 100 steps on a PC with
P4 CPU. The Friman method requires at least three times more to
sample 1000 paths with the same length. Additionally, the MCMC
method of Behrens et al. runs significantly more slowly according
to their evaluation (Behrens et al., 2003). On the other hand, when
the level of noise is large (25% noise), our method performs better
than Friman’s method as shown in Fig. 4c. This demonstrates that
our algorithm samples paths more effectively due to the continu-
ous simulation of the von Mises–Fisher distribution and the resam-
pling step of particle filtering. The results also reveal that the
streamline method FACT is sensitive to noise, and that it performs
less accurately compared both to our method and Friman’s method
under low and high levels of noise.
Fig. 6. Top: synthetic data with fiber crossing
In Fig. 5, we have quantitatively compared the performance of
our method with that of two alternative methods (Mori et al.,
1999; Friman et al., 2006) on an artificial fiber bundle. Here, we
first construct a synthetic ground truth tensor field containing a
curved fiber bundle with large curvatures at some locations, as
shown in Fig. 5a. Fig. 5b shows a zoomed region of Fig. 5a to better
visualise the details of the synthetic fibers. Here, we add noise to
the synthetic image in the following way. We first generate a base-
line image and six synthetic noise-free diffusion weighted images
from the tensor image in Fig. 5a with gradient directions
½1;0;1�; ½�1;0;1�; ½0;1;1�; ½0;1; �1�; ½1;1;0� and ½�1;1;0�. Next, we
add increasing levels of Rician noise to the baseline image and each
of the six DWIs. We then apply our method, the streamline method
(FACT) (Mori et al., 1999) and the Friman method (Friman et al.,
2006) to the noisy datasets to reconstruct the fibers. We estimate
the tensor image from the noisy DWIs using least squares fitting
(Basser et al., 1994). For each method, we obtain the best possible
results (in our case MAP path) by manually adjusting the relevant
parameters. To evaluate the results, we sample a number of points
on the ground truth fiber path, and compute the mean of distance
error between the sampled ground truth points and the corre-
sponding points on the reconstructed paths for each of the three
methods. Fig. 5c illustrates how the error distance is measured be-
tween a sample point on the ground truth path and the corre-
sponding point on the tracked path. Fig. 5d plots the mean
distance error for each method as a function of the level of Rician
noise. The figure reveals that our method achieves the smallest er-
ror at all levels of noise. Moreover, our method also exhibits a more
reproducible behavior when the level of noise is severe. The figure
also reveals that both our method and the Friman method (Friman
et al., 2006) (the probabilistic methods) perform better than the
streamline method (Mori et al., 1999). This is most evident at high
levels of noise.
. Bottom: tracking result of our method.
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In Fig. 6, we show the behavior of the algorithm under both
noise and fiber crossings. We again generate a noise-free synthetic
tensor field. In this case a right angle crossing between horizontal
and vertical fibers is synthesized (as shown in the top row of Fig.
6). Additionally, we also add 5% Rician noise to the data set. In
the crossing region, the first and second eigenvalues of the tensor
are assumed to be equal. As a consequence, the diffusion tensors
here are oblate ellipsoids. By contrast, the prolate tensors in re-
gions without fiber crossing are elongated ellipsoids. We then ap-
ply our method to track the fiber from a seed by propagating 1000
particles for 200 steps. The globally optimal MAP paths for the par-
ticle trajectories are computed and visually compared with the
ground truth fiber path in Fig. 6b. Although the principal eigenvec-
tor of the oblate tensors are not aligned with the fiber orientations,
the result shows that our method still works fairly well under fiber
Fig. 7. (a) 1000 particle traces from a seed point in Corpus callosum, (b) from two seed p
1000 path samples using the method in (Bjornemo et al., 2002) from the same seed point
method (Friman et al., 2006) from the same seed points as in (b), (f) zoomed particle trace
crossing. The algorithm can interpolate over gaps in the transition
region, and allows the prior density to predominantly control the
propagation of the particles in crossing regions. Subfigure (c) of
Fig. 6 shows the trajectories for each of the particles at the final
stage of propagation. The figure further reveals that our method
is able to deal with multi-fiber crossings by propagating a propor-
tion of the particles along each of the possible fiber branches. Since
the aforementioned methods have not been specifically considered
in the modeling of oblate tensors, we do not compare our result
with the alternatives.

4.2. Brain diffusion MRI

Real-world diffusion MRI data was acquired from a healthy
adult volunteer using a Siemens Allegra 3T head-only scanner. A
oints in the superior longitudinal fasciculus, (c) optimal MAP paths of (a) and (b), (d)
s as in (b) with parameters a ¼ 0:001, b ¼ 80, (e) 1000 path samples using Friman’s
s of two seed points from the MAP path of example (a), (g) optimal MAP paths of (f).
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128� 128� 58 volume image was acquired with 2� 2� 2 mm
voxel resolution. A six direction gradient scheme was used with
10 repetitions per-image, b ¼ 1000 s=mm2 for the gradient direc-
tions, and b ¼ 0 s=mm2 for the baseline image. Repetitions were
aligned via rigid registration of the baseline images. A step length
of 1 mm and 5000 particles were used for all examples. The prop-
agation of a particle was halted when it exits white matter, charac-
terised by a low FA value (FA < 0.2).

Fig. 7a shows the trajectories of 1000 particles seeded from a
point in the Corpus callosum. Although we use 5000 particles for
all examples, we show the trajectories of only 1000 particles in
the results due to visualisation problems and the limited process-
ing capability of our PC. However, the configurations of the trajec-
tories of all 5000 particles are almost identical to those of the 1000
particles shown in the figures. The reason for this is that because of
the re-sampling process used, there are many paths overlapping
each other in the final step of tracking (this observation is based
on our empirical evaluations of the results). Hence, we discard
the repeated paths for visualisation purpose. Fig. 7a shows that
the sampled paths provide a robust delineation of the expected fi-
ber bundle. Fig. 7b shows an additional example with two seed
points in the superior longitudinal fasciculus. This example reveals
how our probabilistic algorithm is able to handle splitting fibers
and ambiguous neighborhoods. Fig. 7c shows the global optimal
MAP paths of the examples in Fig. 7a and b. We also compared
our result with that obtained using our implementation of the
method in (Bjornemo et al., 2002) and Friman’s method based on
the same seed points as shown in Fig. 7b. The distribution of the
sampled paths of the method in (Bjornemo et al., 2002) is con-
trolled by a regularisation parameter a and stochastic parameter
b. The larger the stochastic parameter, the more dispersed the
resulting sample paths. Fig. 7d shows 1000 paths sampled using
Fig. 8. Probability map of our algorithm from (a) a seed point in the Corpus callosum and
of the method in (Bjornemo et al., 2002) from the same seed points as in (b). (d) Probab
the method of (Bjornemo et al., 2002). One problem with the meth-
od is that there is no prior distribution for the local fiber orienta-
tions and the profile of the sampled paths are empirically
controlled by a stochastic parameter. By contrast, both our method
and Friman’s method aim to locate the true posterior distribution
of the fibers from reliable prior distributions of the local fiber ori-
entations. In our method, particles with low probability of exis-
tence are eliminated during the resampling stage, and the
sampled paths are most concentrated around the final optimal fi-
ber. Fig. 7e shows 1000 sample paths using Friman’s method. The
figure shows that the sampled paths from Friman’s method are
more dispersed, with a number of paths which have low probabil-
ities. Moreover, our algorithm runs much faster than Friman’s algo-
rithm. To further evaluate the algorithm, we select two seed points
from the MAP path of the example in Fig. 7a and let the algorithm
track from one to the other. Fig. 7e shows 1000 sample paths from
each seed point. The figure shows that the sampled paths from the
two seed points are almost overlapping with each other. Fig. 7f
shows their two optimal MAP paths, which are very close to each
other. Thus, the second seed point can successfully return to the
first one along the MAP path. This example shows that the perfor-
mance of our algorithm is robust and stable.

On the other hand, based on the particle traces, we can calculate
the probability of connection between the seed voxel and a specific
voxel by computing the fraction of particles passing through that
voxel. We can thus produce a probability map of connections be-
tween the seed and all remaining voxels. In Fig. 8a, we show the
probability map from a seed point in the Corpus callosum. The col-
oring shows the likelihood of paths (connecting the seed voxel and
each of the remaining voxels) generated by our algorithm. Fig. 8b
gives a probability map of longer fiber tracts of two seed points
shown in Fig. 8b. The result here is compared to that of the method
(b) from two seed points in the superior longitudinal fasciculus. (c) Probability map
ility map of Friman’s method from the same seed points as in (b).
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in (Bjornemo et al., 2002), as shown in Fig. 8c, and Friman’s
method, as shown in Fig. 8d, which gives a wider distribution.

5. Conclusion

We have presented a new method for probabilistic white matter
fiber tracking. The global tracking model is formulated using a
state space framework, which is implemented by applying particle
filtering to recursively estimate the posterior distribution of fibers
and to locate the global optimal fiber path. Each ingredient of the
tracking algorithm is detailed. For modeling the fiber orientation
distribution, we classify voxels of the white matter as either pro-
late or oblate tensors. For prolate tensors, the orientation distribu-
tion is theoretically formulated by combining the axially
symmetric tensor model with a noise model for DWI. For oblate
tensors, the orientation distribution is computed using a normal
distribution of angles between fiber orientations and the smallest
eigenvectors of the tensors. Fast and efficient sampling is realised
using the von Mises–Fisher distribution. As a consequence, there
is no need to apply MCMC sampling (Behrens et al., 2003) or to dis-
cretise the state space (Friman et al., 2006) to sample paths from
the fiber orientation distribution.

Based on our experimental evaluations, the advantages of the
proposed algorithm are threefold. First, unlike previous methods
which are computationally very expensive, our method shows im-
proved computational efficiency and is able to rapidly locate the
global optimal fiber and to compute the connectivity map for the
seed point. Second, our method can more accurately reconstruct
the true fiber paths in very noisy images. It gives smaller errors be-
tween the reconstructed path and the true fiber path. Third, the
proposed method is able to deal with fiber crossings because we
separately model the orientation distributions for different shapes
of diffusion tensors.

However, there are several ways in which the method can be fur-
ther improved. For instance, our model of the orientation distribu-
tion for oblate tensors is not accurate enough to capture the
complex configurations at fiber crossings. Thus, there are large
uncertainties at such voxels. More sophisticated methods will have
to be developed for dealing with fiber crossings in our future work.
One possibility is the use of mixtures of von Mises–Fisher distribu-
tions (McGraw et al., 2006). To validate the method in a quantitative
way, real-world datasets with annotated ground truth are needed.
Developing simulated and real DTI sets with ground truth for valida-
tion and across-site comparison is an active area of imaging research,
but to our knowledge these are not yet available to the community.
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