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Abstract

Standard particle filtering technique have previously been applied to the problem of fiber
tracking by Brun et al. (2002) and Bjornemo et al. (2002). However, these previous at-
tempts have not utilised the full power of the technique, and as a result the fiber paths were
tracked in a goal directed way. In this paper we provide an advanced technique by pre-
senting a fast and novel probabilistic method for white matter fiber tracking in diffusion
weighted MRI (DWI), which takes advantage of the weighting and resampling mechanism
of particle filtering. We formulate fiber tracking using a nonlinear state space model which
captures both smoothness regularity of the fibers and the uncertainties in the local fiber
orientations due to noise and partial volume effects. Global fiber tracking is then posed as a
problem of particle filtering. To model the posterior distribution, we classify voxels of the
white matter as either prolate or oblate tensors. We then construct the orientation distribu-
tions for prolate and oblate tensors separately. Finally, the importance density function for
particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast
and efficient sampling is achieved using Ulrich-Wood’s simulation algorithm. Given a seed
point, the method is able to rapidly locate the globally optimal fiber and also provides a
probability map for potential connections. The proposed method is validated and compared
to alternative methods both on synthetic data and real-world brain MRI datasets.

Key words: Diffusion tensor MRI; Tractography; Probabilistic fiber tracking; Particle
filtering; von Mises-Fisher sampling

1 Introduction

Diffusion tensor MRI (DTI) has become a popular tool for non-invasive explo-
ration of the anatomical structure of the white matter in vivo (Basser et al., 1994).
It endows each voxel with a 3 x 3 symmetric positive-definite matrix, which charac-
terises the local water diffusion process. It is based on a local Gaussianity assump-
tion concerning the probability of water molecule motion in a defined time period.
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White matter fiber tracking or “tractography” estimates likely fiber paths by tracing
the local tensor orientations (Mori and Van Zijl, 2002; Parker, 2004). In this paper,
we present a new and fast probabilistic fiber tracking algorithm which utilises the
particle filtering technique and von Mises-Fisher sampling.

1.1 Related Literature

1.1.1 Fiber Tracking

Broadly, the fiber tracking methods described in the literature can be classified as
belonging to two groups. The first group of methods is based on local line propaga-
tion techniques (or streamline techniques) (Basser et al., 2000; Lazar et al., 2003;
Mori et al., 1999). Step-by-step, they integrate a fiber pathway from a predefined
seed point along the principal diffusion directions, which correspond to the princi-
pal eigenvectors of the diffusion tensors. The main difference among the methods
in this group is the way in which local information is incorporated to locate smooth
fiber paths. For instance, Lazar et al. (2003) use the entire diffusion tensor to deflect
the estimated fiber trajectory in the desired directions. The main drawback of line
propagation methods is that errors accumulate as the propagation takes place over
a long distance.

The second group of methods are based on global optimisation techniques (Gossl
et al., 2002; Parker et al., 2002; Pichon et al., 2005). Starting from a seed point,
they attempt to locate an improved estimate of the true fiber pathway using energy
minimisation techniques. For instance, Parker et al. (2002) apply the fast march-
ing technique to propagate connection paths determined by the principal eigen-
vectors of the tensors. Gossl et al. (2002) et al. apply Kalman filtering to track
globally optimal paths, according to a fiber smoothness criterion. Pichon et al.
(2005) determine the optimal path between two voxels by solving the Hamilton-
Jacobi-Bellman equation using dynamic programming. Prados et al. (2006) use
Riemannian geometry and control theory to trace the neural fiber bundles by com-
puting the geodesic distances between seed and end point locations. More recently,
Fletcher et al. (2007) develop a volumetric approach for quantitatively studying
region-to-region white matter connectivity from diffusion tensor MRI. They use
the Hamilton-Jacobi equation to formulate the minimal path problem between two
regions.

One common feature of the above methods is that local fiber orientations are de-
termined in a purely deterministic way. However, due to both noise (Macovski,
1996) and ambiguities for voxels where multiple fibers cross or branch (partial vol-
ume effects (Alexander et al., 2001)), the local fiber orientations measured by DTI
are not completely reliable. For instance, in the case of partial volume effects, the
diffusion process within voxels is no longer Gaussian. As a result, the diffusion



tensor is an incomplete model of the diffusion signal. A natural way to deal with
this problem is to measure uncertainty of the local fiber orientation measurement
probabilistically at each voxel. Jones (2003) quantifies the uncertainties in the fiber
orientations using the bootstrap method and then visualises the orientational field
using uncertainty cones.

1.1.2  Probabilistic Fiber Tracking

As a result, probabilistic fiber tracking methods have received considerable interest
recently as a means of incorporating orientational uncertainties (Brun et al., 2002;
Bjornemo et al., 2002; Behrens et al., 2003, 2007; Friman et al., 2006; Lazar and
Alexander, 2005; Parker et al., 2003; Parker and Alexander, 2003, 2005). Instead of
reconstructing fiber pathways deterministically, they aim to measure the probability
of connectivity between brain regions.

These methods have two stages. In the first stage, they model the uncertainty in
DTI measurements at each voxel using a probability density function (PDF) for the
fiber orientations (Behrens et al., 2003; Friman et al., 2006). Behrens et al. (2003)
was the first to formalise the PDF for local fiber orientations using a Bayesian
framework. They present three models for describing the local diffusion process of
water molecules, and their models use different levels of complexity. The param-
eters of the models are estimated using a Gibbs sampler. They applied a Markov
Chain Monte Carlo (MCMC) procedure to sample from a single fiber orientation
distribution. They then used the set of samples to model the uncertainty in ori-
entation. Friman et al. (2006) proposed an alternative Bayesian method based on
a simplified and more tractable diffusion tensor model. They replace the continu-
ous PDF of fiber orientation by a set of uniform samples on a unit sphere. How-
ever, their PDF does not consider the uncertainties due to partial volume effects.
Broadly speaking, the diffusion tensor allows the reliable definition of the principle
diffusion direction, which corresponds to the local fiber orientation. However, in
voxels with more complex configurations such as fiber crossings, the orientation
conveyed by a diffusion tensor is ambiguous. To overcome this difficulty, a multi-
tensor (or multi-compartment) extension of the single diffusion tensor model has
been proposed (Tuch et al., 2002; Frank, 2001; Behrens et al., 2007). The basic
idea here is to approximate the diffusion process using a mixture of Gaussian den-
sities (Frank, 2001). Behrens et al. (2007) determine the complexity of the fiber
structure at each voxel using automatic relevance determination. They then extend
their previous work (Behrens et al., 2003) to deal with multi-orientations within a
voxel by using a multi-compartment description of the diffusion process. More so-
phisticated methods for modeling PDFs of multi-fiber orientations at a voxel have
also been developed for characterising the observed diffusion. For instance, Tuch
(2004) describe the observed diffusion for high angular resolution diffusion imag-
ing (HARDI) using the g-space framework, which is able to resolve fiber crossings.
Tournier et al. (2004) express the diffusion-weighted signal as a spherical convo-



lution of the response function. The approximate PDF for fiber orientations is then
recovered using spherical deconvolution. McGraw et al. (2006) model the PDF for
fiber orientations using a mixture of von Mises-Fisher distributions. They use this
model for segmenting high angular resolution diffusion MRI. Bhalerao and Westin
(2007) build the PDFs from HARDI using a hyperspherical von Mises-Fisher mix-
ture model. They map the fiber orientation samples to a 5D representation which
can avoid the ambiguities associated with the sign flips of directions in 3D. They
then fit their model using Maximum Likelihood estimation. Although these sophis-
ticated models can better represent diffusion weighted signals, new imaging meth-
ods require much finer angular resolution and more scanning time than DTI (often
50 or more gradient directions are required). Therefore, in this paper, we focus on
estimating the PDF of fiber orientations using the widely adopted diffusion tensor
imaging model.

In the second stage, probabilistic tracking algorithms simply repeat a streamline
propagation process (typically 1000 ~ 10000 times) with propagation directions
randomly sampled from the PDF for fiber orientation. The fraction of the stream-
lines that pass through a voxel provide an index of the strength of connectivity
between that voxel and the seed point. By contrast with the first stage, few methods
have been developed to efficiently sample fiber paths from orientation PDF. The
main difference between existing methods for probabilistic fiber tracking is found
in the way that the PDF for fiber orientation is modeled. Most methods estimate
the connectivity map by sampling directly from the PDF for fiber orientation. For
instance, Parker et al. (2003) modeled the uncertainty of the fiber orientations us-
ing the normal distribution, and the parameters of the distribution is controlled in
a heuristic way. They then sequentially sample fiber paths from the normal distri-
bution. Parker and Alexander (2003) have further developed their previous work to
deal with multi-fiber crossings. They distinguish between prolate and oblate ten-
sors using the spherical harmonic parameters of the diffusion weighted signals.
They fit the DWIs using both single and multi-tensor models. The normal distribu-
tion is used to control the uncertainties and sample fiber paths in a efficient way.
Cook et al. (2004) further improved the method by capturing the orientation er-
rors using the Watson distribution. The advantage of these methods is that they
are able to efficiently sample fiber paths in a probabilistic way. Although the nor-
mal distributions are easily sample from, the choice is motivated by computational
expediency and it is not clear that it accurately models the sources of uncertainty
present. The main differences between these sequential sampling methods of Parker
et al. (2003); Parker and Alexander (2003); Cook et al. (2004) and our method are
the weighting and resampling stages of particle filtering. On the other hand, the
uncertainties of the fiber orientations have been modeled in a theoretically princi-
pled Bayesian framework by Behrens et al. (2003, 2007) and Friman et al. (2006).
However, the fiber orientation distributions are difficult to simulate directly. As a
result, the sampling process is not easily tractable. Thus it is necessary to resort to
Markov Chain Monte Carlo methods (Behrens et al., 2003) or to evaluate the PDF
discretely with low angular resolution. One drawback of these tracking methods is



their computational complexity (often more than several hours on a high-end PC
(Behrens et al., 2003; Friman et al., 2006)), and this is unacceptable in practice.

1.1.3  Particle Filtering for Fiber tracking

Particle filtering was originally investigated for probabilistic fiber tracking by Brun
et al. (2002) and Bjornemo et al. (2002). In a short abstract paper, Brun et al.
(2002) was the first to sketch out the idea of applying the sequential importance
sampling and resampling mechanism (also known as particle filtering) for tractog-
raphy. Bjornemo et al. (2002) further detailed and developed the ideas in Brun et al.
(2002). Specifically, they discussed in detail the conceptual model of importance
sampling and resampling. They then construct the uncertainties of fiber orienta-
tions using a Gaussian noise model. Stochastic fiber paths are generated from the
noisy distribution in a goal directed way. Finally, The connections between the pro-
posed tracking model and the importance sampling and resampling framework are
discussed. Since the weights of the sampled paths are constant throughout the prop-
agation process, the weighting and resampling technique are not incorporated into
their tracking model.

1.2 Contribution

Developing on the work of Brun et al. (2002) and Bjornemo et al. (2002), in this pa-
per we present a fast and novel probabilistic method for white matter fiber tracking
based on particle filtering and von Mises-Fisher sampling. We first formulate fiber
tracking using a nonlinear state space model and recursively compute the posterior
distribution using particle filtering (Doucet et al., 2000, 2001; Gordon et al., 1993).
This technique has been successfully used in computer vision for visual tracking
(Isard and Blake, 1998) and contour extraction (Perez et al., 2001). It provides a
sound statistical framework for propagating a sample-based approximation of the
posterior distribution. There are almost no restrictions on the type of model that can
be used. As a result, we can model the fiber orientation distributions for prolate ten-
sors and oblate tensors separately. The proposed tracking model can capture both
smoothness regularity of the fibers and the uncertainties of the local fiber orienta-
tions due to both noise and partial volume effects. Since samples from the posterior
path distribution are maintained at each propagation step, different decision crite-
ria can be used to identify the optimal fiber. This procedure is similar to the active
testing and tree pruning method for maximum a posteriori (MAP) road tracking
developed by Geman and Jedynak (1996). Given a seed point, our method is able
to rapidly locate the global optimal fiber path and also provide a probabilistic con-
nectivity map between the seed point and all other voxel locations.

Compared to the methods proposed by Brun et al. (2002); Bjornemo et al. (2002),



we make the following two novel contributions.

First, our proposed method generates reliable fiber paths by fully utilising the
weighting and resampling technique of particle filtering. We model the probabil-
ity density for fiber orientations in a theoretically justified way. In order to over-
come the difficulty of sampling the theoretical fiber orientation distribution, we
simulate paths using a simpler approximating distribution (namely the importance
density function) for fiber orientations which is efficient to sample from. We then
sequentially evaluate and adjust the sampled paths according to the true orientation
distribution. In this way, the method achieves both efficiency and accuracy. Second,
to implement an effective particle filtering algorithm for fiber tracking, we first ap-
ply the von Mises-Fisher distribution to model the prior and importance density of
our tracking process. Fast sampling is realised on the unit sphere and fiber paths
are efficiently generated using the simulation algorithm for the von Mises-Fisher
distribution developed by Ulrich (1984); Wood (1994).

A preliminary version of the algorithm reported here was first described in a con-
ference paper (Zhang et al., 2007). However, here we consolidate the work and
expand the description of the method. Moreover, we provide additional qualita-
tive and quantitative results to validate the method. The outline of the paper is as
follows. In Section 2, we first formally develop the global fiber tracking model
based on a nonlinear state space model, and we also show how particle filtering can
be used to recursively compute the posterior distribution, so as to compute opti-
mal fiber paths and a probabilistic connectivity map. Section 3 provides the model
ingredients necessary to implement the global tracking technique described in Sec-
tion 2. Specifically, we describe how to construct the observation density, the prior
density, the importance density function and the simulation for von Mises-Fisher
distribution. In Section 4, we evaluate both qualitatively and quantitatively the per-
formance of the algorithm on synthetic data and real-world diffusion MRI datasets.
We also compare the results of our method with those obtained using alternative
methods described elsewhere in the literature. Section 5 concludes the paper and
discusses directions for future research.

2 Tracking Algorithm

The problem of fiber tracking from a 3D diffusion MRI volume is to extract the
most likely fiber pathway from a predefined seed point. Contrary to the standard
tracking problem where local information is gathered as time progresses, we collect
the whole set of data before tracking begins. Thus, at each step of propagation, we
set the observation set as the data visible only from the current position. In this
sense, the fiber tracking problem is similar to the contour extraction (Perez et al.,
2001) and road tracking (Geman and Jedynak, 1996) in computer vision. However,
it is a more challenging problem because there are numerous fiber paths in white



Fig. 1. Path representation.

matter that exhibit crossings and dispersion.

We formulate the fiber tracking problem using a state space model. Given the prior
probability densities that characterise the properties of the expected fiber paths and
the observation densities that characterise the uncertainty of local fiber orientations,
a posterior distribution of the target fiber can be estimated. Because of the complex
geometry of the fiber paths and the various uncertainties of the orientation mea-
surements, both the prior density and the observation density are non-Gaussian.
Thus, standard linear state space techniques such as the Kalman filter are inappro-
priate here, and a nonlinear filter is necessary. In contrast to the work of Gossl et
al. (2002) which used the Kalman filter to locate the optimal path with regard to
smoothness constraint for the fibers, our method deals with both smoothness reg-
ularity and uncertainties of fiber orientations induced by noise and partial volume
effects.

2.1 Global Tracking Model

A white matter fiber path P can be modeled as a sequence of points in the image
space Q) C R3,ie. P,y = (x0,Z1,..., Tny1), as shown in Fig. 1. Thus, commenc-
ing from a seed point z, the progressive growth of a path in discrete time can be
described as

Tiv1 = T; + pivy, (1)

where p; and v; are respectively the step size and the direction of propagation (unit
vector) at step 7. As with most previous methods, we set the step size to be a con-
stant, i.e. p; = p, 7 = 0, ..., n. Thus, the dynamics of path growth is only determined
by the propagation directions v;. In the following, we denote a path as a sequence of
unit vectors Py,.1 = 09., = {0, ..., U }. Let ) be the set of observations or image
data of a 3D diffusion weighted imaging (DWI) volume. The image data observed
at the location indexed i, v;, is y; = Y(0;) = Y(x;), i.e. Y(0;) refers to the DWI in-
formation observed at the starting point of unit vector v; connecting x; and z;, 1 (see
Fig. 1). Our goal is to propagate a sequence of unit vectors {v;,7 = 0, 1, ..., n} that
best estimate the true fiber path based on the conditional prior density p(0;.1|0o:;)
and the conditional observation density p()|0.;)-



We assume that the tracking dynamics forms a Markov chain, so that
P(Vig1]00:) = p(Vig1]0:). (2)

This means the new state is conditioned directly only on the immediately preceding
state, and is independent of the past. Thus, the prior for the fiber path is

n
P(@O:n) = p(ﬁo) Hp(@z'|@z‘—1). 3)
i=1
We also assume that the observations or diffusion measurements (DWI) are condi-
tionally independent given 0., i.€.

y|UOn Hp |U0n (4)

ref)

where () is the set of voxels of the image volume. Additionally, if we assume that
the diffusion measurement at a point does not depend on any points in the history of
the path, then p(y;|vo.;) = p(y:|0;). Based on the Equation (3) and the assumptions,
the posterior distribution p(?y.,|)) can be expanded as

p(00:|Y) = p(00|Y) [ p(0:]0i-1, V). )
=1

Applying Bayes theorem, we have

P(yil0:)p(0;|051)
p(y:) '

In our tracking model we do not assume any prior information about the diffusion
measurements (DWTI), thus we can simply consider p(y;) as a fixed regularity factor
of the system. As a result, we can write

p(0;]0-1,Y) = (6)

ply:) = / Dyl 6:)p(6]0_1 ) do. (7)

Most previous methods reported in the literature (Behrens et al., 2003, 2007; Parker
et al., 2003; Parker and Alexander, 2003) for probabilistic fiber tracking estimate
the posterior p(0g.,|)) by sampling 1000 ~ 10000 streamline paths from the con-
ditional observation density p(y;|0;). However, the density p(y;|v;) is often com-
plicated, thus the sampling is difficult and time consuming (Behrens et al. (2003,
2007)). Moreover, these methods do not take into account the smoothness con-
straint for fibers. On the other hand, Friman et al. (2006) estimate the posterior
by sampling from p(0;|0;_1,)). This sampling is again difficult and requires the
computation of the integral in Equation (7) over the new state. To avoid these dif-
ficulties, Friman et al. discretise the problem using a finite set of several thousand
directions for propagating paths from v;_; to ©;. Thus, sampling the discretised ver-
sion of p(0;|0;_1,)) becomes feasible, and the integral becomes a sum. In addition



to introducing errors, this discretised sampling is still time consuming, since each
discretised direction must be evaluated at all locations in the volume. Moreover,
simple sequential sampling methods may degenerate as the number of propagation
steps becomes large (Doucet et al., 2001).

2.2 Recursive Posterior using Particle Filtering

We wish to estimate the posterior distribution iteratively in time. By inserting Equa-
tion (6) into Equation (5), we have

plitalY) = p(ol) TT p(alir) [T 2212, (8)
i=1 i=1 p(vi)

where p(0y|)) is predefined. The modeling of the transition probability p(v;|0;_1)
and the distribution p(y;|0;) will be detailed in the next section of this paper. We
recast the problem of tracking the expected fiber path as that of approximating the
maximum a Posteriori (MAP) path from the posterior distribution.

It is straightforward to obtain the following recursive formula for the posterior from
Equation (8)

P(0it1[0:)p(Yit1|Di+1) )

P(Yi+1) '

Since the denominator of this expression requires the evaluation of a complex high-
dimensional integral, it is infeasible to locate the maximum likelihood path analyt-
ically. In conjunction with the methods described above, we evaluate the posterior
using a large number of samples which efficiently characterise the required pos-
terior. Thus, statistical quantities, such as the mean, variance and maximum like-
lihood, can be estimated using the sample set. Since it is seldom possible to ob-
tain samples from the posterior directly, we use particle filtering (sequential Monte
Carlo technique) to recursively compute a finite set of sample paths from the pos-
terior based on the Equation (9).

P(00:i41|Y) = p(00:4|Y)

To sample a set of K paths, we place K particles at the starting point of the path and
allow them to propagate as time progresses. Given the states of the set of particles
@6{?, k =1,.., K} at time 7, the process of sequentially propagating the particles
to the next time step ¢ + 1 can be described in three stages. These are referred
to as prediction, weighting and selection and described in detail in the following
paragraphs. Let 7(0o.;]))) be a so-called importance function which has a support
including that of the posterior p(?¢.;|)). For our sequential importance sampling,
suppose that we choose an importance function of the form (Doucet et al., 2000)

7 (00:0|Y) = 7 (00| V) [T 7 (Vi 05-1, V). (10)

i=1



In the first prediction stage, the simulated path @((fi) with index k is grown by one

step to be @(()Z) 11 through sampling from the importance function w(@§_’?1|@§’“), V).
The new set of paths is generally not an efficient approximation of the posterior
distribution at time ¢ + 1. Thus, in the second or weighting stage, we measure the
reliability of the approximation using a ratio, referred to as the importance weight,
between the true posteriori and its approximation. The importance weight is given

by

5k
i+1 (k:) :
( |y) ( z+1|v 7y)
We are more interested in the normalised importance weights, given by
(k) with
Wit =~ (12)

i
Z{; wle

Inserting Equation (9) and Equation (11) into the above expression, we have the
proportionality

. (k)
it o o PO il i) 13
7T( Vig11Y; y)

The choice of importance function plays an important role in determining the per-
formance of particle filtering. This choice will be detailed in the next section of this
paper. At this point the resulting weighted set of paths provides an approximation
of the target posterior. However, the distribution of the weights wﬁﬂ may become
skewed as time increases. The purpose of the final or selection stage is to avoid this
degeneracy. We measure the degeneracy of the algorithm using the effective sample
size Ny introduced in Liu (1996),

1

Neff —.
SE L (@)?

(14)

When Ny is below a fixed threshold N, then resampling procedure is used (Doucet
etal., 2001; Gordon et al., 1993). The key idea here is to eliminate the paths or par-
ticles with low weights ﬁ)ﬁ)l and to multiply offspring particles with high weights.
We obtain the surviving particles by resampling K times from the discrete approx-

imating distribution according to the importance weight set {wﬁ)l, k=1,.,K}.

Both fiber reconstruction and connectivity map computation can be easily accom-
plished using the discrete distribution of the posterior conveyed by the importance
weight set. The MAP estimate of the true fiber path from starting point x is the
path with the maximal importance weight. In order to compute the connectivity
map, the algorithm records the full tracking history of all the particles at each time
step. The probability of connectivity between z, and a specific voxel is computed
as the fraction of particles that pass through that voxel.

10



2.2.1 Relationship to Alternative Tracking Methods

Here, we analyse in detail the relationship between our method and the alterna-
tive method proposed by Brun et al. (2002) and Bjornemo et al. (2002). Generally
speaking, the two methods are developed in rather different settings. Our method is
formulated using a non-linear state space model for tractography, and uses particle
filtering as a natural tool for finding the posterior distribution of the fiber paths. By
contrast, the method in Brun et al. (2002) and Bjornemo et al. (2002) is built on
the vanilla particle filtering technique given in Liu et al. (2001). They propose a so-
called rough tracking model using the particle filtering technique. The weakness of
their method is that they do not incorporate the weighting and resampling steps of
particle filtering in their tracking method and the proposed tracking method works
in a goal directed way.

More specifically, Bjornemo et al. (2002) proposed the following weighting scheme
for sampling

A pi(zi-1)pi(xi|Ti1)
Zpi—l (wi—1)mi(w5|75-1)

(15)

Wit+1 =

The model assumed for p;(x;|x;_1) is based on Gaussian noise. Additionally, it is
assumed that 7TZ'<£U,L"$Z‘,1) = pz(xl\xl,l) and pi(mifl) = pi,l(mi,l). As a result,
w;+1 = w; for all the propagation steps and resampling therefore becomes unnec-
essary.

Compared to the method in Brun et al. (2002) and Bjornemo et al. (2002), we
use the weighting scheme given in Equation (13). We sample from the importance
density w(ﬁgi)l 16, ) which is constructed using a von Mises-Fisher model. The
importance density is fitted in a simple way to estimate the observation density.
As we will show in the following, our observation p(y;|0;) is based on a theoreti-
cally justified noise model. Unfortunately, it is intractable to make samples directly.
Although we make samples from a simplified and more tractable importance dis-
tribution, we evaluate and recursively adjust the samples according to their true
distribution using the weighting and resampling mechanism of particle filtering. As
a result, the sampled fiber paths are simulated so as to reliably reflect the theoretical
posterior p(9g.;+1|)) given in Equation (9).

3 Algorithm Ingredients

In this section, we give the details of the local ingredients of the global tracking
model using particle filtering.

11



Low

(a) (b) ()

Fig. 2. Example of the observation density of three tensors from the brain white mat-
ter. (a) a prolate tensor with FA = 0.9299,¢ = 0.9193. (b) a prolate tensor with
FA =0.3737,¢; = 0.3297. (¢) an oblate tensor FFA = 0.7115,¢; = 0.2157. For voxels
with prolate tensors, the larger the value of F'A and ¢;, the more focused the fiber orienta-
tion distribution. For voxels with oblate tensors, fiber orientations are focused on the plane
spanned by the two leading eigenvector.

3.1 Observation Density

We commence by showing how to model the observation density p(y;|v;), which
encodes the uncertainty in local fiber orientation due to both noise and partial vol-
ume effects. Our observation density function is constructed using a single dif-
fusion tensor model. Despite its weakness in capturing complex fiber structures,
DTI is still the most widely used diffusion MRI modality. Formally, the diffusion-
weighted intensity s; is related to the diffusion tensor D by the Stejskal-Tanner
equation (Basser et al., 1994)

s; = soexp(—b;g] Dg;), (16)

where gradient direction §; and the b-value b; are the scanner parameters for data
acquisition, and, sy is the intensity with no diffusion gradients applied.

Let A\; > Ay > A3 > 0 be the decreasing eigenvalues of diffusion tensor D and
€1, €9, €3 be the corresponding normalized eigenvectors. The degree of anisotropy
of water diffusion at a voxel can be characterised using the fractional anisotropy
(FA) (Basser and Pierpaoli, 1996) of the diffusion tensor D). We can classify the
diffusion tensors in white matter into two groups. For prolate tensors, A; > (Ay ~
A3), and, for oblate tensors, (A; & \2) < A3. Tensor classification can be estimated
using the prolate shape metric proposed by Westin et al. (2002), i.e.

A — X
VAT A3+ A3

In this paper, we distinguish prolate tensors and oblate tensors by using a threshold
T =0.25.

o= 7)
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In the case of prolate tensors (¢; > 7), it can be assumed that the single dominant
diffusion direction, é4, is in the direction of the underlying fiber orientation. The
modeling of our prior distribution for prolate tensors is based on the work of An-
derson (2005), Alexander (2005) and Friman et al. (2006). Borrowing ideas from
Anderson (2005), we assume that the prolate diffusion tensor within a voxel is a
single axially-symmetric tensor. Let us set up a local coordinate system for the
diffusion tensor D so that it can be written as a diagonal matrix diag(A, A1, \|)
where the axis corresponding to )\ is associated with the fiber orientation. In spher-
ical coordinates, let 6 be the polar angle from the A-axis and 1) be the azimuth angle
from one of A, -axis. Then, a gradient direction g; with (6, ¢) has local coordinates
g(0,1) = [sinf cos ), sin @ sin 1, cos §]. Thus, diffusion along g; is

ﬁjTDQj = 9(97¢) 'dmg(AL, AL, )\||) : 9(97¢)T
:/\J_+C082t9~()\|| _)\J_).

(18)

Suppose the trace of the diffusion tensor ¢r(D) is known and varies unsignificantly
over the white matter. The mean of the three main diffusivities is A = tr(D)/3, and
as aresult \| = 3\ — 2\, . Let © be the true fiber orientation, then cos = © - Jj-
Therefore, Equation (18) can be written as

97 Dg; = AL +3(0-3;)° (A = Av), (19)

which is equivalent to the constraint tensor model of Alexander (2005) and Friman
et al. (2006). By inserting Equation (19) into Equation (16), we have

s; = soexp[—bj(AL + 3(0 - Qj)2(/_\ — A1)l (20)

Here, the intensity measured along any gradient direction is subject to two unknown
parameters, i.e. v and )\ .

Due to noise, the intensity «; in the DWI measured by the scanner is a noisy obser-
vation of the true signal s;. It is well known that the noise in MRI can be described
accurately by a Rician distribution Salvador et al. (2005). Salvador et al. (2005)
showed that the error distribution conforms closely to a normal distribution with a
zero-mean and standard deviation equal to the inverse of the signal-to-noise ratio
(SNR), i.e. €; = log(u;) — log(s;) ~ N (0, 0; "), where 0; = s;/0; is the SNR. Let
the intensities observed at voxel i be y; = {ug, u, ..., ups } Where M is the number
of gradient directions used in data acquisition. Following the idea of Friman et al.
(2006), we setup the observation density at voxel 7 for prolate tensors by multiply-
ing the error distribution over all gradient directions of the DWIs, i.e.

M M 2 2

. _ 0; o7 (logu; — log s;)
p(yilos) = [ N(0,0;") = [ —2= exp[— , (2D

(i) };[1 (0,0;7) Jl;[l\/ﬂ [ 5 ]

where s; is given by Equation (20). To find the observation density of the variable
v; for fiber orientations, we need to solve for three unknown parameters, i.e. A =
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tr(D)/3, A, and p;, in Equation (21). The value of ¢7(D) and A, can be estimated
using the method in (Anderson, 2005). Here, we simply set ¢ (D) to be the trace of
the diffusion tensor D estimated using the linear least squares estimation (Basser
etal., 1994), and set A\ = (Ay + A3)/2. The SNR is estimated using the weighted
least squares method in (Salvador et al., 2005). Panels (a) and (c) of Fig. 2 show
two examples of the fiber orientation distribution calculated using Equation (21).
The figure shows that the orientation distribution of a prolate tensor is concentrated
when its F'A and ¢; are both relatively large.

In the case of oblate tensors (¢; < 7), the dominant direction of diffusion is am-
biguous and Equation (21) is inappropriate. It is possible that diffusion in the plane
defined by é¢; and é5 contains two or more significant non-collinear diffusion direc-
tions, each corresponding to a separate fiber tract. This situation may be indicative
of fiber crossings and branchings, a well-known challenge in the analysis of DTI.
In this case, we set up a local coordinate system with é; as the Z axis and repre-
sent the fiber orientation v in spherical coordinates. Let 6’ be the polar angle from
the é3-axis, i.e. / = arccos(v - é3), and ¢’ be the azimuth angle (relative to an
arbitrary reference direction in the plane spanned by é; and é5). The vector v is
predominantly distributed on the plane spanned by é; and é;. Hence, we choose the
distribution of the polar angle 6’ to be normal with mean 7/2 and standard devia-
tion o. The azimuth ¢’ is assumed to have a uniform distribution over the interval
0, 27]. Thus, our fiber orientation distribution for oblate tensors is given by

exp|— (arccos(D - é3) — 7r/2)2] . i
oV 2m 202 27

p(yilv) = (22)

Here, é3 is the eigenvector of the diffusion tensor D estimated using linear least
squares. Panel (c) of Fig. 2 shows an example of the observation density of the
fiber orientation for an oblate tensor in white matter.

3.2 Prior Density

The state transition probability p(0;,1|0;) specifies a prior distribution for the change
in fiber direction between two successive steps. Here, we adopt a model of the prior
density based on the von Mises-Fisher (vMF) distribution over a unit sphere. This
is one of the simplest parametric distribution for directional data (Mardia and Jupp,
2000).

For a d-dimensional unit random vector x, the probability density function for the
vMF distribution is given by

(d/2-1

T
exp(rp’ X), (23)
STy A p(rp” x)

fd(x; K '%) = (
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where k > 0, ||p|| = 1, and I/5_+(-) denotes the modified Bessel function of the
first kind and order d/2 — 1. The density f4(X; 11, ) is parameterised by the mean
direction vector ;o and the concentration parameter . The greater the value of &
the higher the concentration of the distribution around the mean direction p. In
particular, when x = 0, the distribution is uniform over the sphere, and as k — oo,
the distribution tends to a point density. The distribution is rotationally symmetric
around the mean i, and is unimodal for x > 0.

In our case, the directions are defined on a two directional unit sphere in R3, ie.
d = 3. We choose to model the prior state transition probability using the vVMF
distribution with mean v; and concentration parameter x, i.e.

p(@iﬂ‘@i) = fS(@iHS 0, /i)- (24)

The value of the concentration parameter ~ controls the smoothness regularity of
the tracked paths. The value of « is set manually to optimally balance the prior
constraints on smoothness against the evidence of v;,; observed from the image
data. In our real-world experiments, we set k = 30.

3.3 Importance Density Function

As pointed out by Doucet et al. (2000), the optimal importance density, which min-
imises the variance of the importance weight w;; conditional upon v, ,; and ), is
p(vi11|0;, V). However, as noted above, the optimal density suffers from two ma-
jor drawbacks. In our case it is both difficult to sample from p(v;41|?;,)) and to
evaluate the integral analytically over the new state. Thus, our aim is to devise a
suboptimal importance function that best represents p(y;11|0;41)p(0;11|0;) subject
to the constraint that it can be sampled from in a straightforward manner.

A popular choice is to use the prior distribution as the importance function, i.e
T(0i1]03, V) = f3(Dis1; 0, K). (25)

The von Mises-Fisher distribution in Equation (24) can be efficiently sampled from
using the simulation algorithm developed by Wood (1994). In this case, 0,1 is
predicted from v; and the importance weight is updated using

Wiy1 = WeP(Yis1|Vigr)- (26)

However, the prior importance function is not particularly efficient. Since no ob-
servational information is used, the generated particles are often outliers of the
posterior distribution. As a result, the weights may exhibit large variations and the
results of estimation may be poor. Indeed, if the diffusion tensor at v; is prolate,
then the movement to the state v;,; i1s mainly attributable to the fiber orientation
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distribution. Thus, the posterior distribution is more strongly influenced by the ob-
servation density. For prolate tensors, we believe that the observation density in
Equation (21) is a good choice for the importance function. However, it is difficult
to sample from such a density function.

To overcome this problem, we model the observation density in Equation (21) using
the von Mises-Fisher distribution. Since we use an axially symmetric tensor model,
the distribution of fiber orientations in Equation (21) is also rotationally symmetric
around the direction of largest probability, as shown in Fig. 2. We therefore use the
leading eigenvector, ¢!, of the diffusion tensor D; at 9; estimated using the linear
least squares as the mean direction of the fiber orientation distribution. We have
found experimentally that the leading eigenvector ¢} of D; is almost identical to
the direction of maximum probability for the distribution in Equation (21). This
is based on a test of 1000 prolate tensors from the brain MRI dataset described
later in Section 4.2. The average difference between the two directions is less than
2°. Another issue we need to address it to select the concentration parameter v;
at each state 9;. An accurate solution is to fit the von Mises-Fisher distribution to
the observation distribution in Equation (21) using the algorithm described in (Hill,
1981). However, this will significantly increase the computational complexity of
the algorithm, which is one of the advantage of our algorithm over other methods
such as those described in (Behrens et al., 2003) and (Friman et al., 2006). To
overcome this problem, we sample a number of prolate tensors with different FA
values from the MRI dataset. We then fit the concentration parameter v; to the
observation density in Equation (21) for each of these tensors using Hill’s algorithm
(Hill, 1981). Figure 3 shows the concentration parameter v; as a function of the FA
of prolate tensors. The figure reveals that the relationship between the concentration
parameter and the tensor FA is empirically well described by using an exponential
function, i.e.

2
i — a+exp<“§fl>>, @7

where « and ~y are estimated from the above sampled fittings. Moreover, for particle
filtering it is not necessary that the importance density is identical to the observation
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density. Therefore, for prolate tensors we set the importance density as
T(Vi41]05, V) = f3(@i+1§éli,7/i), (28)

where v; is estimated from FA using Equation (27). For oblate tensors, since the
observation density in Equation (22) is wide, in this case we still use the prior
given in Equation (25) as the importance density.

3.4 Simulation of von Mises-Fisher Distribution

The von Mises-Fisher distribution can be efficiently sampled from using the simu-
lation algorithm developed by Ulrich (1984), which is further improved by Wood
(1994). Ulrich’s algorithm is designed for a general group of distributions on unit
d-spheres, including the von Mises-Fisher distribution. Here, we discuss the ideas
of Ulrich (1984) and Wood (1994) which are necessary for implementing our pro-
posed tracking method. Ulrich (1984) observed that if we sample a unit vector V'
from the (d — 1)-dimensional sphere and sample a scalar random variable from the
density

(1 — w?)m=3)/2 exp(rw) d—1

NS ]d/Q—lr(?)v (29)

g(z) =

then the concatenated unit vector X = ((1 — W)Y2V" W) has a von Mises-
Fisher distribution. Therefore, simulating the von Mises-Fisher distribution can be
solved by simulating the density ¢g(z). However, it is still intractable to sample
from g(x) directly. To overcome this problem, the acceptance-rejection technique
is used to develop an algorithm that makes samples from Equation (29) by using
the following envelop density

24(@-1)/2 (1 — 22)@3/2

D)= B0 re -0 g 0

where B(41, 1) = % is the so-called Beta function. To maximise the

acceptance ratio g(x)/e(z,q), ¢ = (—2k + \/4/<92 +(d—1)?)/(d—1). As aresult,
simulation of von Mises-Fisher distribution is achieved by sampling from e(z, )
following the standard acceptance-rejection method. According to the Monte Carlo
evaluation performed by Ulrich (1984), if generating a sample from a normal dis-
tribution takes CPU time ¢, then in our case d = 3 it requires CPU time 4ty ~ Tt
to sample a unit vector from the vMF distribution. This is sufficiently efficient for
us to sequentially sample fiber paths from the von Mise-Fisher distribution.
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3.5 Algorithm Outline

To summarise, the iteration steps of the algorithm are as follows:

given K particles at step i: @6{?, k=1,...K
compute diffusion tensor Dl(k) for each particle & using linear least square fitting
Prediction: fork =1,...,. K

(k)

- if ng) is a prolate tensor, sample v*,\; according to Equation (28)

- if Dz(k) is a oblate tensor, sample ﬁ*gi)l according to Equation (25)

Weighting: fork =1,...,. K

- if prolate tensor, compute ﬁ;g_li)l from Equation (13) using Equation (21), (24)
and (28)

- if oblate tensor, compute zbi(_?l from Equation (13) using Equation (22), (24)
and (25)

- normalise all these weights

Selection: Evaluate N, ;s using Equation (14).

S if Nopy > N, then for k = 1, ..., K, 0% = =)

- if Ness < Ng, then for k& = 1,..., K, sample an index z(k) from discrete

distribution {wg_’i)l}kzl,”, x> and set @fi)l = 1;*§i(f ) ), wﬁ)l =1/N

4 Experimental Results

We have evaluated our algorithm both on synthetic tensor fields and real-world MRI
brain datasets. We have also qualitatively and quantitatively compared the results
of our method with those obtained using the streamline method (Mori et al., 1999)
and the probabilistic tracking method of Friman et al. (2006). Since our particles
propagate in a continuous domain, an interpolation issue arises for diffusion data
that is acquired only on a discrete grid. Here, we use the trilinear interpolation
method introduced in (Zhukov and Barr, 2002). This method is computationally
inexpensive and can preserve the positive-definiteness on the diffusion tensors.

4.1 Synthetic Dataset

We commence by evaluating the performance of the algorithm on synthetic tensor
fields. Each of the datasets used in this section contain 128 x 128 x 40 voxels, have
an in-plane resolution of 2 X 2 mm and a slice thickness of 2mm. The procedure for
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generating synthetical additive noise is as follows. Suppose that the minimum and
maximum image scalar values are u; and u;,. We refer to the noise level as being
r%, if the standard deviation of the distribution from which the noise is sampled is
0y = 105 (un — w;). For each voxel, a noise value is sampled from an appropriate
distribution (Rician in our case) with zero mean and variance o2, and then added to

the intensity value of that voxel.

Our first example aims to qualitatively demonstrate the robustness of the algorithm
under the influence of noise. To do this, we first generate a noise-free synthetic ten-
sor field. The data contains a single cylinder, and the principal diffusion directions
of the voxels within the cylinder form a concentric vector field, as shown in panel
(a) of Fig. 4. Each voxel is visualised by an ellipsoid whose principal axes are the
three orthogonal eigenvectors of the tensor, and the radii of the ellipsoid along the
axes are determined by the magnitude of the corresponding eigenvalues. Then, we
add different levels of noise to the tensor field. The proposed particle filter algo-
rithm is then used to track the global optimal fiber (MAP path) from a seed point
using 1000 particles for 650 propagation steps with step size 1mm. Our result is
compared with that obtained using the standard local streamline method (FACT)
(Mori et al., 1999) and the Bayesian method of Friman et al. (2006). For Friman’s
method, we sample 1000 paths commencing from the seed point using the reported
discrete sampling technique with 2562 predefined directions on the unit sphere, and
select the path with maximal probability as the optimal fiber. The resulting optimal
fiber path for each of the three methods together with the ground truth path are
shown in subfigures (b) and (d) of Fig. 4. Subfigures (c) and (e) show the trajec-
tories of the particles obtained using our method at propagation step 300 for the
results in subfigures (b) and (d) respectively. The figure shows that under relatively
mild levels of noise (10% noise) both our method and Friman’s method reconstruct
the true fiber path quite well. However, our method runs significantly faster than
Friman method. For instance, the MATLAB implementation of our method takes
less than 100 seconds for 1000 samples to propagate for 100 steps on a PC with
P4 CPU. The Friman method requires at least three times more to sample 1000
paths with the same length. Additionally, the MCMC method of Behrens et al. runs
significantly more slowly according to their evaluation (Behrens et al., 2003). On
the other hand, when the level of noise is large (25% noise), our method performs
better than Friman’s method as shown in Fig. 4(c). This demonstrates that our al-
gorithm samples paths more effectively due to the continuous simulation of the von
Mises-Fisher distribution and the resampling step of particle filtering. The results
also reveal that the streamline method FACT is sensitive to noise, and that it per-
forms less accurately compared both to our method and Friman’s method under low
and high levels of noise.

In Figure 5, we have quantitatively compared the performance of our method with
that of two alternative methods (Mori et al., 1999; Friman et al., 2006) on an ar-
tificial fiber bundle. Here, we first construct a synthetic ground truth tensor field
containing a curved fiber bundle with large curvatures at some locations, as shown
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Fig. 4. (a) Synthetic data consisting of a cylinder and a sample slice with a zoomed view.
(b) Tracked results of our method (MAP path), streamline method (FACT) (Mori et al.,
1999) and the Friman method (Friman et al., 2006) under 10% noise. (c) A snapshot of the
sampled paths of our method at propagation step 300 of case in (b). (d) Results under 25%
noise. (e) A snapshot of the sampled paths of our method at propagation step 300 of case
in (d).

in Fig 5(a). Fig 5(b) shows a zoomed region of Fig 5(a) to better visualise the
details of the synthetic fibers. Here, we add noise to the synthetic image in the
following way. We first generate a baseline image and six synthetic noise-free dif-
fusion weighted images from the tensor image in Fig 5(a) with gradient directions
[1,0,1],[-1,0,1],[0,1,1],[0,1,—1],[1,1,0] and [—1, 1, 0]. Next, we add increas-
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ing levels of Rician noise to the baseline image and each of the six DWIs. We then
apply our method, the streamline method (FACT) (Mori et al., 1999) and the Friman
method (Friman et al., 2006) to the noisy datasets to reconstruct the fibers. We esti-
mate the tensor image from the noisy DWIs using least squares fitting (Basser et al.,
1994). For each method, we obtain the best possible results (in our case MAP path)
by manually adjusting the relevant parameters. To evaluate the results, we sample a
number of points on the ground truth fiber path, and compute the mean of distance
error between the sampled ground truth points and the corresponding points on the
reconstructed paths for each of the three methods. Fig 5(c) illustrates how the er-
ror distance is measured between a sample point on the ground truth path and the
corresponding point on the tracked path. Fig 5(d) plots the mean distance error for
each method as a function of the level of Rician noise. The figure reveals that our
method achieves the smallest error at all levels of noise. Moreover, our method also
exhibits a more reproducible behavior when the level of noise is severe. The fig-
ure also reveals that both our method and the Friman method (Friman et al., 2006)
(the probabilistic methods) perform better than the streamline method (Mori et al.,
1999). This is most evident at high levels of noise.

In Figure 6, we show the behavior of the algorithm under both noise and fiber cross-
ings. We again generate a noise-free synthetic tensor field. In this case a right angle
crossing between horizontal and vertical fibers is synthesized (as shown in the top
row of Fig. 6). Additionally, we also add 5% Rician noise to the data set. In the
crossing region, the first and second eigenvalues of the tensor are assumed to be
equal. As a consequence, the diffusion tensors here are oblate ellipsoids. By con-
trast, the prolate tensors in regions without fiber crossing are elongated ellipsoids.
We then apply our method to track the fiber from a seed by propagating 1000 par-
ticles for 200 steps. The globally optimal MAP paths for the particle trajectories
are computed and visually compared with the ground truth fiber path in Fig 6(b).
Although the principal eigenvector of the oblate tensors are not aligned with the
fiber orientations, the result shows that our method still works fairly well under
fiber crossing. The algorithm can interpolate over gaps in the transition region, and
allows the prior density to predominantly control the propagation of the particles in
crossing regions. Subfigure (c) of Fig. 6 shows the trajectories for each of the par-
ticles at the final stage of propagation. The figure further reveals that our method
is able to deal with multi-fiber crossings by propagating a proportion of the parti-
cles along each of the possible fiber branches. Since the aforementioned methods
have not been specifically considered in the modeling of oblate tensors, we do not
compare our result with the alternatives.

4.2  Brain Diffusion MRI

Real world diffusion MRI data was acquired from a healthy adult volunteer using
a Siemens Allegra 3T head-only scanner. A 128 x 128 x 58 volume image was
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Fig. 5. (a) Synthetic ground truth fiber bundle. (b) A zoomed portion of the image in (a). (c)
[lustration of error measurement between the ground truth fiber path and the reconstructed
fiber path by fiber tracking algorithms. (d) Mean error comparison of the results of our
method with those of FACT algorithm (Mori et al., 1999) and Friman method (Friman et
al., 2006) under different levels of Rician noise.

22



B T T § I .
e & § O O oo

(a)
120 " 7 120

110+ Ground truth | 110}
MAP path !

100+ ! 100+
| |

90+ | | 90t

,,,,,,,,, | |
80r 1 80r
Seed
701 1 701
A

60+ 1 60+

50+ 1 50+

40F ~ T T T | Co T T T T 40f
| |

30¢ | | 1 30}

20} ! ! 20}

10 ‘ ‘ 10
20 40 60 80 100 120

Fig. 6. Top: synthetic data with fiber crossing. Bottom: tracking result of our method.

acquired with 2 x 2 x 2mm voxel resolution. A six-direction gradient scheme was
used with 10 repetitions per-image, b = 1000s/mm? for the gradient directions,
and b = 0s/mm? for the baseline image. Repetitions were aligned via rigid reg-
istration of the baseline images. A step length of 1mm and 5000 particles were
used for all examples. The propagation of a particle was halted when it exits white
matter, characterised by a low FA value (FA<0.2).

Fig. 7(a) shows the trajectories of 1000 particles seeded from a point in the Corpus
callosum. Although we use 5000 particles for all examples, we show the trajec-
tories of only 1000 particles in the results due to visualisation problems and the
limited processing capability of our PC. However, the configurations of the trajec-
tories of all 5000 particles are almost identical to those of the 1000 particles shown
in the figures. The reason for this is that because of the re-sampling process used,
there are many paths overlapping each other in the final step of tracking (This ob-
servation is based on our empirical evaluations of the results). Hence, we discard
the repeated paths for visualisation purpose. Fig. 7(a) shows that the sampled paths
provide a robust delineation of the expected fiber bundle. Fig. 7(b) shows an ad-
ditional example with two seed points in the superior longitudinal fasciculus. This
example reveals how our probabilistic algorithm is able to handle splitting fibers
and ambiguous neighborhoods. Fig. 7(c) shows the global optimal MAP paths of
the examples in Fig. 7(a) and Fig. 7(b). We also compared our result with that
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obtained using our implementation of the method in (Bjornemo et al., 2002) and
Friman’s method based on the same seed points as shown in Fig. 7(b). The distri-
bution of the sampled paths of the method in (Bjornemo et al., 2002) is controlled
by a regularisation parameter « and stochastic parameter (3. The larger the stochas-
tic parameter, the more dispersed the resulting sample paths. Fig. 7(d) shows 1000
paths sampled using the method of (Bjornemo et al., 2002). One problem with the
method is that there is no prior distribution for the local fiber orientations and the
profile of the sampled paths are empirically controlled by a stochastic parameter.
By contrast, both our method and Friman’s method aim to locate the true posterior
distribution of the fibers from reliable prior distributions of the local fiber orien-
tations. In our method, particles with low probability of existence are eliminated
during the resampling stage, and the sampled paths are most concentrated around
the final optimal fiber. Fig. 7(e) shows 1000 sample paths using Friman’s method.
The figure shows that the sampled paths from Friman’s method are more dispersed,
with a number of paths which have low probabilities. Moreover, our algorithm runs
much faster than Friman’s algorithm. To further evaluate the algorithm, we select
two seed points from the MAP path of the example in Fig. 7(a) and let the algo-
rithm track from one to the other. Fig. 7(e) shows 1000 sample paths from each seed
point. The figure shows that the sampled paths from the two seed points are almost
overlapping with each other. Fig. 7(f) shows their two optimal MAP paths, which
are very close to each other. Thus, the second seed point can successfully return to
the first one along the MAP path. This example shows that the performance of our
algorithm is robust and stable.

On the other hand, based on the particle traces, we can calculate the probability of
connection between the seed voxel and a specific voxel by computing the fraction
of particles passing through that voxel. We can thus produce a probability map of
connections between the seed and all remaining voxels. In Fig. 8(a), we show the
probability map from a seed point in the Corpus callosum. The coloring shows the
likelihood of paths (connecting the seed voxel and each of the remaining voxels)
generated by our algorithm. Fig. 8(b) gives a probability map of longer fiber tracts
of two seed points shown in Fig. 8(b). The result here is compared to that of the
method in (Bjornemo et al., 2002), as shown in Fig. 8(c), and Friman’s method, as
shown in Fig. 8(d), which gives a wider distribution.

5 Conclusion

We have presented a new method for probabilistic white matter fiber tracking. The
global tracking model is formulated using a state space framework, which is im-
plemented by applying particle filtering to recursively estimate the posterior dis-
tribution of fibers and to locate the global optimal fiber path. Each ingredient of
the tracking algorithm is detailed. For modeling the fiber orientation distribution,
we classify voxels of the white matter as either prolate or oblate tensors. For pro-
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Fig. 7. (a): 1000 particle traces from a seed point in Corpus callosum. (b): from two seed
points in the superior longitudinal fasciculus. (c): Optimal MAP paths of (a) and (b). (d):
1000 path samples using the method in (Bjornemo et al., 2002) from the same seed points as
in (b) with parameters o = 0.001, 8 = 80. (e): 1000 path samples using Friman’s method
(Friman et al., 2006) from the same seed points as in (b). (f): Zoomed particle traces of two
seed points from the MAP path of example (a). (g): Optimal MAP paths of (f).
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(d)

Fig. 8. Probability map of our algorithm from (a): a seed point in the Corpus callosum, and,
(b): from two seed points in the superior longitudinal fasciculus. (c): Probability map of the
method in (Bjornemo et al., 2002) from the same seed points as in (b). (d): Probability map
of Friman’s method from the same seed points as in (b).

late tensors, the orientation distribution is theoretically formulated by combining
the axially symmetric tensor model with a noise model for DWI. For oblate ten-
sors, the orientation distribution is computed using a normal distribution of angles
between fiber orientations and the smallest eigenvectors of the tensors. Fast and
efficient sampling is realised using the von Mises-Fisher distribution. As a conse-
quence, there is no need to apply MCMC sampling (Behrens et al., 2003) or to
discretise the state space (Friman et al., 2006) to sample paths from the fiber orien-
tation distribution.

Based on our experimental evaluations, the advantages of the proposed algorithm
are threefold. First, unlike previous methods which are computationally very expen-
sive, our method shows improved computational efficiency and is able to rapidly
locate the global optimal fiber and to compute the connectivity map for the seed
point. Second, our method can more accurately reconstruct the true fiber paths in
very noisy images. It gives smaller errors between the reconstructed path and the
true fiber path. Third, the proposed method is able to deal with fiber crossings
because we separately model the orientation distributions for different shapes of
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diffusion tensors.

However, there are several ways in which the method can be further improved. For
instance, our model of the orientation distribution for oblate tensors is not accu-
rate enough to capture the complex configurations at fiber crossings. Thus, there
are large uncertainties at such voxels. More sophisticated methods will have to be
developed for dealing with fiber crossings in our future work. One possibility is the
use of mixtures of von Mises-Fisher distributions (McGraw et al., 2006). To val-
idate the method in a quantitative way, real world datasets with annotated ground
truth are needed. Developing simulated and real DTI sets with ground truth for val-
idation and across-site comparison is an active area of imaging research, but to our
knowledge these are not yet available to the community.
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