
16 Diffusion Tensor MRI
Visualization

16.1 Introduction

Diffusion Tensor Magnetic Resonance Imaging

(DT-MRI or DTI) is emerging as an important

technology for elucidating the internal structure

of the brain and for diagnosing conditions

affecting the integrity of nervous tissue. DTI

measurements of the brain exploit the fact that

the network of fibers has a characteristic micro-

structure that constrains the diffusion of water

molecules. The direction of fastest diffusion is

aligned with fiber orientation in a pattern that

can be numerically modeled by a diffusion

tensor. DTI is the only modality for noninva-

sively measuring diffusion tensors in living

tissue, making it especially useful for studying

the directional qualities of brain tissue. Applica-

tion areas include neurophysiology, neuroanat-

omy, and neurosurgery, as well as the diagnosis

of edema (swelling), ischemia (brain damage

from restricted blood flow), and certain types

of brain tumors.

One of the fundamental problems in under-

standing and working with diffusion tensor data

is its 3D and multivariate nature. Each sample

point in a DTI scan can be represented by

six interrelated values, and many features of

interest are described in terms of derived

scalar and vector fields, which are logically

overlayed on the original tensor field. Thus,

the central tasks of DTI visualization include

the following:

1. Determining which aspects of the tensor

field will be graphically conveyed,

2. Determining where that information must

be displayed and where it can be ignored,

3. Visually abstracting the DTI quantities

into the computer-graphics primitives

with which the visualization is ultimately

expressed.

This chapter gives background on the acqui-

sition and mathematics of diffusion tensor im-

aging, and then surveys the current vocabulary

of visualization methods used with DTI. We

finish with some open questions that remain in

the area of diffusion tensor visualization.

16.2 Diffusion Tensor Imaging

Appreciating the origin and physical signifi-

cance of acquired scientific data is the first step

in a principled approach to its visualization.

This section briefly reviews the physical and

mathematical underpinnings of diffusion tensor

imaging.

Scientific understanding of the physical basis

of diffusion converged at the beginning of the

nineteenth century. In 1827, Robert Brown dis-

covered the Brownian motion, which underlies

the thermodynamic model of diffusion. He ob-

served that pollen grains suspended in water

exhibit a zigzag ‘‘random walk.’’ This motion

was hypothesized by Desaulx in 1877 to be the

result of thermally energetic water molecules

repeatedly colliding with the pollen grain. Ein-

stein confirmed this hypothesis in 1905 as part

of the development of his mathematical model

of diffusion as a dynamically expanding Gauss-

ian distribution [14]. The path of the pollen

grain suspended in water is just a visible indica-

tor of the similar Brownian motion of all liquid
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molecules, whether in pure water, a porous

medium, or biological tissue.

Many materials have intrinsic structural

properties that constrain diffusion so that diffu-

sivity is greater in some directions than in

others; this is called anisotropy. If there is no

directional variation in diffusion rates, the dif-

fusion is called isotropic. Biological tissues often

appear anisotropic because cell membranes and

large protein molecules limit the motion of

water molecules; this is termed restricted dif-

fusion by Cooper et al.[8]. Dissections and his-

tological studies have taught us that the

grey matter of the brain is largely isotropic

at the scale of MR scans, while the brain’s

white matter is more anisotropic, arising from

the alignment of myelinated neuronal axons,

which preferentially constrain water diffusion

along the axon direction. Thus, via the mechan-

ism of diffusion, the physical microstructure of

white-matter tissue enables imaging of the

neural pathways that connect the brain. DTI

imaging measurements have been validated

within acceptable error on the fibrous muscle

tissue of the heart [31,16].

The measurement of diffusion in biological

tissue is achieved with magnetic resonance im-

aging (MRI). In 1946, Purcell [29] and Block [6]

independently discovered the nuclear magnetic

resonance (NMR) effect. Water molecules con-

tain hydrogen nuclei with uncoupled spins. In a

strong magnetic field, the uncoupled spins cause

the nuclei to align with and precess around the

magnetic field direction, generating, in turn, a

weak magnetic field aligned with the stronger

ambient magnetic field. A second outside mag-

netic field can perturb this weak magnetic field;

the magnetic resonance signal is the result.

In 1950, Erwin Hahn discovered an import-

ant NMR signal called the spin echo [15], and

noted that the spin echo signal was perturbed by

the diffusion of water molecules. Diffusion MR

takes advantage of this effect and can thus

measure hydrogen self-diffusivity in vivo. It is

generally believed that the quantities we meas-

ure with diffusion MR are a mixture of intracel-

lular diffusion, intercellular diffusion, and the

exchange between the two sides of the cell mem-

brane [34,32,33].

In 1973, Lauterbur described the principles of

NMR imaging [20]. He encoded positioning in-

formation on NMR signals using gradient mag-

netic fields and the imaging-reconstruction

algorithm. As a result, NMR imaging pinpoints

the location where the signal is generated. This

invention led to a new medical diagnostic in-

strument. In 1985, Bushel and Taylor combined

the diffusion NMR and MR imaging techniques

to create diffusion-weighted imaging [35]. A dif-

fusion-weighted image (DWI) is a scalar-valued

image that usually captures diffusion rate infor-

mation in one direction. In a DWI, the effect of

diffusion on an MRI signal is an attenuation;

the measured image intensity can be related to

the diffusion coefficient by the following equa-

tion [21]:

~II(x, y) ¼ I0(x, y) exp (bD) (16:1)

where Io(x, y) represents the voxel intensity in

the absence of diffusion weighting, b charac-

terizes the diffusion-encoding gradient pulses

(timing, amplitude, shape) used in the MRI se-

quence, and D is the scalar diffusion coefficient.

Anisotropic diffusion information cannot be

effectively represented in a scalar-valued DWI.

In 1992, Basser et al. described the estimation of

the diffusion tensor from the NMR spin echo

[3]. The diffusion tensor, D, captures directional

variation in the diffusion rate.

D is a 3� 3 positive symmetric matrix:

D ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
@

1
A (16:2)

b is also now a 3� 3 matrix, and it represents

the diffusion encoding. The equation becomes

~II(x, y) ¼ I0(x, y) exp �
X3

i¼1

X3

j¼1

bijDij

 !
(16:3)

A diffusion tensor has three real eigenvalues,

l1, l2, and l3. Each has a corresponding eigen-

vector, v1, v2, or v3. A diffusion tensor is geo-

metrically equivalent to an ellipsoid, and the
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three eigenvectors of the diffusion-tensor matrix

are set as the radii of the ellipsoid. The ellipsoid

will match the shape that water diffuses to from

the data point in a fixed amount of time. The

ellipsoids in Fig. 16.1 depict the three types of

spatial diffusion.

In regions of complex-diffusion anisotropy,

such as the area where two fiber bundles cross

or touch each other, a tensor does not accur-

ately model the diffusion process. These areas of

ambiguity can be addressed with a diffusion

model that has more degrees of freedom than

a second-order tensor. Tuch et al. acquire diffu-

sion information in hundreds of directions to

better resolve ambiguity [12,13].

16.3 Approaches for Visualizing DTI
Datasets

16.3.1 Overview

DTI visualization is challenging because the data

has high information content. A tensor field

contains 3D patterns of matrix values, and

there is no single well established method of

displaying such information. Another challenge

for DTI visualization methods is keeping the

results properly grounded in the specific applica-

tion domain for which the data was originally

acquired. Without such a grounding, a visualiza-

tion is unlikely to provide answers or generate

new hypotheses about scientific problems.

Many DTI visualization approaches use a

combination of scalar, vector, and tensor

methods, contracting the tensor to appropriate

scalars or vectors for a particular application.

These derived fields can be used in many ways in

visualization applications, and we will show a

number of examples. In some cases, they are

sufficient alone. From a practical standpoint,

the use of derived fields is also an important

strategy in keeping the information in the visu-

alization to its essential minimum. Much of 3D

DTI visualization struggles with precisely this

issue—that is, which regions in the tensor field

should contribute to the final visualization. The

design of a visualization method is often a com-

promise between being informative and being

legible. Part of what makes DTI visualization

an exciting research topic is that the rules and

strategies governing this design process are still

being discovered.

16.3.2 Scalar Metrics

A common visualization approach involves

contracting each tensor in a DTI to a scalar,

reducing a DTI dataset to a scalar dataset.

A carefully designed scalar metric can extract

useful information while reducing the effect

of noise. Some scalar metrics are rotationally

invariant, which means that they do not depend

on the coordinate system in which the tensor

was measured. This tends to be a useful quality;
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(a) Linear anisotropic diffusion (b) Planar anisotropic diffusion (c) Isotropic diffusion

Figure 16.1 Ellipsoids represent diffusion tensors according the the eigensystem of the tensor: the eigenvalues are the radii of

the ellipsoid, while the eigenvectors determine the orientations of the axes.
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without it, knowledge of the coordinate system

must always be carried along with the metric for

proper interpretation.

The trace of the diffusion tensor Tr(D) ¼
D11 þD22 þD33 measures the mean diffusivity;

it is rotationally invariant. It is demonstrated

that, after induction of stroke, images represent-

ing the trace of the diffusion tensor provide a

much more accurate delineation of the affected

area than images representing the diffusion in

only one direction [36].

Many of the scalar metrics derived from DTI

measure the anisotropy of diffusion in different

ways. Douek et al. defined an anisotropic diffu-

sion ratio (ADR) ADRxz ¼ Dxx

Dzz
for the anisot-

ropy index [10]. Gelderen et al. calculated a

measure of diffusion anisotropy as the standard

deviation of the three diffusion coefficients

A ¼
ffiffi
1
6

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dxx�Dav)

2 þ (Dyy�Dav)
2 þ (Dzz�Dav)

2
p

Dav
to

study the stroke [36]. Both of these metrics are

rotationally variant.

Basser et al. have calculated rotationally in-

variant anisotropy metrics from the diffusion

tensor [4]: relative anisotropy

RA ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l1� < l > )2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l2� < l > )2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l3� < l > )2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 < l >
p

(16:4)

and fractional anisotropy

FA ¼ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l1� < l > )2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l2� < l > )2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l3� < l > )2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ l2
2 þ l2

3

q
(16:5)

where < l >¼ l1þl2þl3

3

Pierpaoli et al. compared the two kinds of

metrics and showed that rotationally invariant

metrics consistently show a higher degree of

anisotropy than their variant analogs [27]. But

because RA and FA are calculated over one

diffusion tensor, they are still susceptible to

noise contamination. Pierpaoli et al. calculated

an inter-voxel anisotropy index, the lattice index

(LI), which locally averages inner products be-

tween diffusion tensors in neighboring voxels.

LI has a low error variance and is less suscep-

tible to bias than are other rotationally invari-

ant metrics.

Scalar anisotropy metrics such as FA and RA

convey how anisotropic a diffusion distribution

may be, but they do not convey whether the

anisotropy is linear, planar, or some combin-

ation of the two. In terms of ellipsoid glyphs,

cigar-shaped and pancake-shaped ellipsoids can

have equal FA although their shapes differ

greatly. Westin et al. [39] more completely

model diffusion anisotropy with a set of three

metrics that measure linear, planar, and spher-

ical diffusion: cl ¼ l1�l2

l1
, cp ¼ l2�l3

l1
, and cs ¼ l3

l1
,

respectively. By construction, cl þ cp þ cs ¼ 1.

Thus, these three metrics parameterize a bary-

centric space in which the three shape extremes

(linear, planar, and spherical) are at the corners

of a triangle, as shown in Fig. 16.2.

One way to qualitatively compare some of the

metrics described above is shown in Fig. 16.3,

where we sample their values on a slice of DTI

data from a brain. Notice that the trace (Tr) is

effective at distinguishing between the cerebral–

spinal fluid (where Tr is high) and the brain

tissue (lower Tr), but it fails to differentiate

between different kinds of brain tissue. High

fractional anisotropy FA, on the other hand,

indicates white matter, because the directional

structure of the axon bundles permits faster

diffusion along the neuron fiber direction than

across it. FA is highest inside thick regions of

uniformly anisotropic diffusion, such as inside

the corpus callosum, the bridge between the two

hemispheres of the brain. Finally, while both cl

and cp indicate high anisotropy, their relative

values indicate the shape of the anisotropy.

16.3.3 Eigenvector Color Maps

When diffusion tensors are measured with

MRI, each tensor is represented by a 3� 3 sym-

metric matrix; the values in the matrix are meas-

ured relative to the coordinate frame of the

MRI scanner. Because they are real-valued,

Johnson/Hansen: The Visualization Handbook Page Proof 24.5.2004 7:20pm page 320

320 The Visualization Handbook



diffusion tensors have three real eigenvalues and

three orthogonal eigenvectors. The eigenvalues

are all nonnegative, because negative diffusivity

is physically impossible. The eigenvectors define

the orientation of the diffusion tensor. The

major or principal eigenvector is associated

with the largest eigenvalue and defines the dir-

ection of fastest diffusion. This direction can

have significant physical meaning. In DTI

scans of nervous tissue, the principal eigenvec-

tor is aligned with the coherent fibers.

A common visualization goal is to depict

the spatial patterns of the principal eigenvec-

tor only in regions where it is meaningful,

rather than give a complete depiction of all

the tensor information. Visualizing these pat-

terns is often an important step in verifying

that a given DTI scan has succeeded in resolv-

ing a feature of interest. A simple spherical

color map of the principal eigenvector is

the standard tool for this task, which first

assigns an (R,G,B) color according to the

(X,Y,Z) components of the principal eigenvec-

tor, v1,

R ¼ abs(v1x), G ¼ abs(v1y), B ¼ abs(v1z),

and then modulates the saturation of the RGB

color with an anisotropy metric. The direction

of the principal eigenvector is numerically ill-

defined when the tensor is isotropic, or has

mostly planar anisotropy, in which case the

visualization should not imply a particular

direction with the hue of the RGB color. Thus,

the saturation is modulated by cl . Also, note

that by design, the same color is assigned

to v and �v. This also has a mathematical

justification. The sign of eigenvectors is not

defined. Numerical routines for their calculation

may return either of two opposing vectors,
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Figure 16.2 Barycentric space of diffusion tensor shapes

(a) Tr : Trace (b) FA: fractional anisotrophy (c) CL(green) and CP (magenta)

Figure 16.3 Different shape metrics applied to one slice of a brain DTI scan
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both of which should be visualized identically.

Fig. 16.4 shows three examples of the the eigen-

vector color map applied to the principal

eigenvector.

16.3.4 Glyphs

A glyph is a parameterized icon that represents

the data with its shape, color, texture, location,

etc. Over the years, researchers have come up

with multiple glyphs suitable for DTI visualiza-

tion. We review and compare some of them

here.

Diffusion ellipsoids are surfaces of constant

mean-squared displacement of diffusing water

molecules at some time t after they are released

at the center of each voxel. Ellipsoids are a

natural choice of glyph to summarize the infor-

mation contained in a diffusion tensor [27]. The

three principle radii are proportional to the

eigenvalues and the axes of the ellipsoid aligned

with the three orthogonal eigenvectors of the

diffusion tensor. The size of an ellipsoid can be

associated with the mean diffusivity. The pre-

ferred direction of diffusion is indicated by the

orientation of the diffusion ellipsoid. Arrays of

ellipsoids can be arranged together in the same

order as the data points to show a 2D slice of

DTI data. Laidlaw et al. normalized the size of

the ellipsoids to fit more of them in a single

image [19] (Fig. 16.5). While this method loses

the ability to show mean diffusivity, it creates

more uniform glyphs that better show anatomy

and pathology over regions.

They also described a method that uses the

concepts of brush strokes and layering from oil

painting. They used 2D brush strokes both indi-

vidually, to encode specific values, and col-

lectively, to show spatial connections and to

generate texture and a sense of speed corres-

ponding to the speed of diffusion. Layering

and contrast were used to create depth. The
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(a) Axial : x and y (b) Coronal : x and z (c) sagittal : y and z

Figure 16.4 Eigenvector color maps shown on axis-aligned slices, with three different slice orientations. The two axes within the

slice are given with the anatomical name of the slice orientation.

Figure 16.5 Arrays of normalized ellipsoids visualize the

diffusion tensors in a single slice
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method was applied to sections of spinal cords

of mice with Experimental Allergic Encephalo-

myelitis (EAE) and clearly showed anatomy and

pathology (Fig. 16.6).

In a still image it is often hard to tell the shape

of an ellipsoid with only surface shading infor-

mation. Westin et al. used a composite shape of

linear, planar, and spherical components to em-

phasize the shape of the diffusion ellipsoids [38].

The components are scaled to the eigenvalues,

but can alternatively be scaled according to

the shapemeasures cl , cp and cs. Additionally, the

color of the glyph is interpolated between the

blue linear case, yellow planar case, and red

spherical case (Fig. 16.7).

Kindlmann’s approach adapted superquad-

rics, a traditional surface-modeling technique

[1], as tensor glyphs. He created a class of

shapes that includes spheres in the isotropic

case, while emphasizing the differences among

the eigenvalues in the anisotropic cases. As dem-

onstrated in Fig. 16.8, cylinders are used for

linear and planar anisotropy, while intermediate

forms of anisotropy are represented by approxi-

mations to boxes. As with ellipsoid glyphs, a

circular cross-section accompanies equal eigen-

values for which distinct eigenvectors are not

defined.

The differences among the glyph methods can

be appreciated by comparison of their results on

a portion of a slice of a DTI brain scan, as

shown in Fig. 16.9. The individual glyphs have

been colored with the principal eigenvector

color map. The directional cue given by the

edges of box glyphs is effective in linearly aniso-

tropic regions, but it can be misleading in

regions of planar anisotropy and isotropy,

since in these cases the corresponding eigenvec-

tors are not numerically well defined. The rota-

tional symmetry of ellipsoid glyphs avoids

misleading depictions of orientation, with the

drawback that different shapes can be hard to

distinguish. The superquadric glyphs aim to

combine the best of the box and ellipsoid

methods.
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Figure 16.6 Brush strokes illustrate the direction and mag-

nitude of the diffusion: background color and texture map

show additional information

Figure 16.7 The composite shape of linear, planar, and

spherical components emphasizes the shape of the diffusion

tensor.

Figure 16.8 Superquadrics as tensor glyphs, sampling the

same barycentric space as in Fig. 16.2
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16.3.5 Tractography

In glyph-based methods, each glyph represents

one diffusion tensor. Tractography, a term first

applied to DTI analysis by Basser [2], yields

curves of neural pathways, which are continuous

and hard to represent using discrete glyphs.

Streamlines and their derivatives are widely

used for tractography results. Xue et al. show

the result of fiber projection reconstruction by

hand-selecting seeding points in a ROI and dis-

playing the curves generated from them [40]. The

colors represent different groups of fiber struc-

tures. Zhang et al. used streamtubes and stream-

surfaces to visualize the diffusion tensor field [41].

Streamtubes visualize fiber pathways tracked in

regions of linear anisotropy: the trajectories

of the streamtubes follow the major eigen vectors

in the diffusion tensor field; the color along

the streamtubes represents the magnitude of

the linear anisotropy; the cross-section shape

represents the medium and minor eigenvectors.

Streamsurfaces visualize regions of planar an-

isotropy: the streamsurface follows the expan-

sion of major and medium eigenvectors in the

diffusion tensor field, and the color is mapped

to the magnitude of planar anisotropy.

Zhang et al. used a culling algorithm to con-

trol the density of the streamtubes in the scene

[41] so that inside structures are visible and

outside structures are still adequately repre-

sented. The metrics for the culling process in-

clude the length of a trajectory, the average

linear anisotropy along a trajectory, and the

similarity between a trajectory and the group

of trajectories already selected.

A significant problem with trajectories calcu-

lated by integration happens in regions where

the white-matter structures change quickly.

Pierpaoli et al. showed that incorrect spurious

connections can easily be generated [26]. Each

diffusion tensor measurement is made over a

small region. If the tissue is coherent in direction

structure throughout that region, then the

measurement will be consistent. Otherwise, the

tensor will be an amalgam of all the different

values in the small region, and the major eigen-

vector may not point along a tract. These prob-

lems happen where tracts cross, diverge, or are

adjacent to other tissues. Tractography is also

sensitive to noise; a small amount of noise can

cause significantly different results.

Some researchers have tried to address these

problems by regularizing diffusion datasets

[5,42,37] or direction maps [28,23]. Some re-

searchers have explored new ways to find con-

nectivity. Brun et al. use sequential importance

sampling to generate a set of curves, labeled

with probabilities, from each seed point [7].
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Figure 16.9 A portion of a brain DTI scan (also used in Figs. 16.3 and 16.4) as visualized by three different glyph methods. The

overall glyph sizes have been normalized.
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Batcherlor et al. generate an isosurface of solu-

tion by solving a diffusion-convection equation

[25]. Parker et al.use front propagation in fas-

t-marching tractography [24]. High angular

resolution diffusion imaging is reported to

ameliorate ambiguities in regions of complex

anisotropy [12,13] and may ultimately be the

best solution to this problem.

16.3.6 Volume-Rendering

Glyphs and tractography communicate field

structure with discrete geometry: the poly-line

or cylinder represents a fiber tract or the faceted

surface of an polygonal ellipsoid, for example.

Direct volume-rendering, on the other hand,

sidesteps the creation of intermediate geometry,

and maps ‘‘directly’’ from measured properties

of the field to optical properties like color and

opacity, which are then composited and shaded

[22,11]. The mapping is performed by the trans-

fer function, which must be carefully designed

to emphasize and delineate the features of inter-

est, while not obscuring them with unimportant

regions. In direct volume-rendering of scalar

data, the transfer function often maps from the

scalar data values to opacity, although greater

specificity and expressivity are possible with

higher-dimensional and multivariate transfer

functions [18]. Because transfer functions are

applied without respect to position in the field,

direct volume-rendering has the potential to ef-

fectively convey large-scale patterns across the

entire dataset.
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Figure 16.10 Xue et al. show the result of tractography with streamlines.

Figure 16.11 Red streamtubes and green streamsurfaces

show linear and planar anisotropy, respectively, together

with anatomical landmarks for context.
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Kindlmann et al. have explored various types

of diffusion tensor transfer functions [17]; the

present discussion will focus on transfer func-

tions of tensor shape because of their intuitive

definition and useful results.

The barycentric space of tensor shapes shown

in Figs. 16.2 and 16.8 captures two important

degrees of freedom (from the total six) in a tensor

field: degree and type of anisotropy. This space

does not represent changes in overall size or

changes in orientation, but these are not crucial

for visualizing the structure of white-matter fiber

tracts. Fig. 16.3a indicated that the trace, Tr,

does not vary significantly between gray and

white matter, and typically, the structural organ-

ization that distinguishes white matter is inter-

esting irrespective of its orientation.

Fig. 16.13 demonstrates the results of using

the barycentric shape space as the domain of

transfer functions that assign opacity only.
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Figure 16.12 Glyph-based visualization of a volumetric portion of a brain DTI scan (also used in Figs. 16.3, 16.4, and 16.9),

with glyph culling based on three different fractional anisotropy thresholds.
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Figure 16.13 Four different barycentric opacity maps and the corresponding renderings
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These renderings were produced with a brute-

force renderer that samples each image ray

at multiple points within the field, interpolates

the tensor field component-wise, calculates the

eigenvalues and the shape metrics (cl , cp, cs), and

then looks up the opacity for that sample. In the

left side of Fig. 16.13, the overall shape of the

brain is seen when opacity is assigned to high cs

(isotropic) samples, while the shape of the white

matter is visible when opacity assignment is

limited to high cl values. Arbitrary combin-

ations of shape may be emphasized with this

sort of transfer function (Fig. 16.13, right).

Fig. 16.14 shows how specifying color as a func-

tion of barycentric shape can create a more

informative rendering: the color variations indi-

cate which portions of the field are more or less

planarly anisotropic.

16.4 Open Issues

Interest and activity in diffusion tensor visual-

ization have been steadily increasing with the

expanding applications of tensor imaging, in-

creased computation and graphics capabilities

for display, and advances in the visualization

methods themselves. There are several import-

ant open issues and design challenges that merit

consideration and further research.

Visual design of glyphs: Glyphs must be para-

meterizable by at least as many variables as we

intend to display through them. On the other

hand, they should also be concise and compact,

so that multiple glyphs viewed next to, or on top

of, each other can still usefully convey informa-

tion. This is a daunting task for depicting com-

plex 3D patterns in the tensor field. Inspiration

may be drawn from different artistic traditions

of painting and technical illustration.

Seeding and culling schemes: While it is easy

to survey information everywhere over a 2D

domain, this is impossible in three dimensions

because of occlusion. The task of glyph place-

ment, trajectory placement, or selection of

any visual abstraction is a difficult problem of

visual optimization; the result must be legible in

multiple contradictory ways. The intercon-

nected nature of the white-matter fiber tracks

in the brain does not make this task easy. Solv-

ing this optimization may involve level-of-

detail information and user-defined regions of

interest.

Computational validation: This is perhaps

the hardest part of doing scientifically useful

visualization. An unresolved issue in DTI visu-

alization is the extent to which the paths calcu-

lated by fiber tracking correspond to the paths

of actual axons in the white matter. Locally, the

fiber direction does correspond to tissue organ-

ization, and the major ‘‘trunk lines’’ of connect-

ivity are known from neuroanatomy. However,

tractography methods can produce long and

circuitous paths of purported connectivity

whose actual validity is not, and can not easily

be, known. Scanning diffusion phantoms (with

known connectivity) might address this, as

would advances in histological preparations.
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Display devices and interaction: DTI datasets

are complicated and inherently 3D. Many visu-

alizations involve large, complex graphical

models. Recent advances in display may help

boost the capabilities and applications of the

visualization. Especially promising is the use of

immersive virtual reality for displaying complex

3D fields of neural structures. But questions

remain about the relative value of different dis-

play and interaction environments.

Visual validation: No one visualization

method stands out as the ‘‘gold standard’’ by

which others are judged. Every method has ad-

vantages and limitations based on what types of

information it seeks to convey and the specific

techniques that are used to convey it. Currently,

most visualization methods are judged by their

own inventors. User studies and other valid-

ation methods will both help justify the methods

in a more objective way and help evaluate dif-

ferent interaction environments.

Modeling: The interaction between water

molecules and biological structures is vital for

understanding the information contained in dif-

fusion tensor images. It is generally believed

that the sheath outside the neural axons causes

most of the restrictions on water diffusion. Less

is known about locations where fiber bundles

diverge, cross, or kiss. What is the contribution

of intracellular diffusion, intercellular diffusion,

and exchange between the membranes? A phys-

ically realistic model may help us analyze the

tensor data and then visualize the underlying

structures in a meaningful way.

16.5 Summary

Since DTI technology emerged 10 years ago,

DTI acquisition, visualization, analysis, and ap-

plication have spurred numerous multidisciplin-

ary efforts. For scientific visualization students,

the problem is especially intriguing, because

DTIs are large 3D multivariate datasets; they

present many challenges for visualization. On

the other hand, the problem has real-world

origins and applications, and many challenges:

The datasets are noisy, resolution is never suffi-

cient, and partial volume effects limit the results.

Perhaps the greatest challenge is the breadth of

knowledge necessary to truly understand the

entire process, from patient to imaging to com-

putation to visual analysis back to patient.

In this chapter, we have given a brief survey

of the last 10 years of visualization-related re-

search, including some of the issues that remain

to resolve. We look forward to the next 10

years, during which we expect that much

more of the tremendous potential of this im-

aging modality will be realized.
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14. A. Einstein. Über die von der molekularkine-
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