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Abstract. In this paper, feature selection methodology from the ma-
chine learning literature is applied to the problem of shape-based clas-
sification. This methodology discards statistical features that are least
relevant for classification and often improves the generalization ability of
classifiers. In context of biological shape classification, feature selection
can pinpoint, in a robust manner, the regions of objects where inter-
class differences are most pronounced. A new feature selection algorithm
is developed by extending an existing support vector machine based algo-
rithm to take advantage of locality properties of shape features. The per-
formance of new algorithm is tested on synthetic and clinical data. The
clinical data comes from a study of hippocampal shape in schizophrenia.
The results on this data indicate that the head of the right hippocampus
is significant for understanding the effects of schizophrenia.

1 Introduction

Recent advances in medical imaging and image processing techniques have en-
abled clinical researchers to link changes in shape of human organs with the
progress of long-term diseases. For example, it has been reported that the shape
of the hippocampus is different between schizophrenia patients and healthy con-
trol subjects [5, 8, 6, 22]. Results of this nature help localize the effects of diseases
to specific organs and may subsequently lead to better understanding of disease
processes and potential discovery of treatment. This paper establishes a frame-
work for further localizing the effects of diseases to specific regions of objects.

A number of methods [5, 15, 24, 28, 6, 16, 9] use statistical classification to gain
insight into the differences in the shape of a biological object between distinct
classes of subjects. This paper’s framework also relies on statistical classification,
but it uses feature selection as a tool for building better generalizable classifiers
and for robustly detecting regions of objects where differences between classes
are most significant.
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The first contribution of this paper is the application of an existing feature
selection method developed by Bradley and Mangasarian [2] to shape character-
ization. Feature selection is a technique from machine learning literature that is
used to reduce the dimensionality of classification problems by eliminating fea-
tures that are least relevant for classification. Feature selection generally leads
to classifiers that generalize well, and by pinpointing relevant features they can
lead to discovery and localization of processes responsible for differences between
classes.

The second contribution of this paper is the development of a new feature
selection algorithm that takes advantage of the locality property of shape fea-
tures. This algorithm is called window selection because it searches for clusters or
windows of features derived from neighboring locations in a geometrical object
representation.

The third contribution of this paper is a comparative study of the perfor-
mance of the two algorithms on both synthetic and clinical data. The synthetic
data is used to test how well the algorithms perform in a situation where the
relevant features are known a priori and are ordered in a way that simulates the
locality of shape features. The clinical data comes from a study of hippocampal
shape in schizophrenia [6], and it is used to compare the results of window and
feature selection with previous findings.

This paper is organized in three sections. Section 2 describes the details of
the feature selection and window selection algorithms. Section 3 compares the
performance of the two algorithms on simulated data. It is followed by the appli-
cation of the algorithms to a clinical study of hippocampal shape in schizophrenia
presented in Sec. 4. Finally, Sec. 5 discusses the work planned for the future.

2 Methods

2.1 Feature Selection

Feature selection is a machine learning methodology that reduces the number of
statistical features in high-dimensional classification problems by finding subsets
of features that are most relevant for discrimination. Classifiers constructed in
the subspace of the selected features tend to generalize to new data better than
classifiers trained on the entire feature set.

Feature selection methods fall into categories of filter methods, which use
feature selection as a preprocessing step to classification (e.g. [19]), and wrapper
methods, which use classification internally as a means of selecting features (e.g.
[14, 20, 13, 25]).

This paper uses and extends a wrapper method developed by Bradley and
Mangasarian [2, 3]. This method uses elements from support vector machine
theory and formulates feature selection as a smooth optimization problem, which
can be transformed into a sequence of linear programming problems.

The input to the feature selection algorithm consists of a training set of
objects that fall into two classes of sizes, m and k. Each object is represented



by an n-dimensional feature vector. The classes are represented by the feature
matrices Am×n and Bk×n.

We wish to find the set of features, i.e., a subset of columns of A and B,
that are most relevant for discriminating between the two classes. The idea of
Bradley and Mangasarian [2] is to look for a relevant subset of features by finding
a hyperplane

P =
{
x ∈ IRn : wT x = γ

}
(1)

that optimally separates the two classes, while lying in the minimal number of
dimensions, as formulated by the energy minimization problem

P = arg min
γ,w

Esep(γ,w) + λEdim(w) . (2)

The term Esep measures how well the hyperplane P separates the elements
in A from the ones in B. It is expressed as

Esep(γ,w) =
1
m
‖(−Aw + eγ + e)+‖1 +

1
k
‖(Bw − eγ + e)+‖1 (3)

where e represents a vector of appropriate size whose elements are all equal to
1, and (•)+ is an operation that replaces the negative elements of • with zero.

Let P− and P+ be a pair of hyperplanes parallel to P , whose distance to P
is 1/‖w‖. Then, Esep measures the distance to P+ of those elements of A that
lie on the ’wrong side’ of P+, as well as the distance to P− of the elements of
B that lie on the ’wrong side’ of P−. By wrong side, we mean that half-space of
P− or P+ which contains the hyperplane P .

The energy term Edim in (2) is used to reduce the number of dimensions in
which the hyperplane P lies. It has the general form

Edim(w) = eT I(w), (4)

where I(w) is an indicator function that replaces each non-zero element of w
with 1. However, since indicator functions are inherently combinatorial and badly
suited for optimization, Bradley and Mangasarian suggest approximating the
indicator function with a smooth function

I ({w1 . . . wn)}) =
{

1− ε−α|w1|, . . . , 1− ε−α|wn|
}

, (5)

which, according to [1], yields the same solutions as the binary indicator function
for finite values of the constant α .

2.2 Window Selection for Shape Features

General feature selection algorithms make minimal assumptions about the na-
ture and the properties of features. For instance, the same algorithm may be
used for classifying documents on the basis of word frequency or for breast
cancer diagnosis. Without prior knowledge of feature properties, the feature se-
lection problem is purely combinatorial, since in a set of n features there are 2n



possible subsets and all of them are considered to be equally worthy candidates
for selection.

In shape classification problems, features are typically derived from dense
geometrical object representations [4, 23, 18, 21, 10, 9, 7, 15], and special relation-
ships exist between features derived from neighboring locations in the objects.
We hypothesize that by incorporating the heuristic knowledge of these relation-
ships into a feature selection algorithm, we can improve its performance and
stability when applied to shape classification.

Features that describe shape are geometric in nature and the concept of
distance between two features can be defined. Furthermore, natural biological
processes exhibit locality : geometric features capturing shape of anatomical ob-
jects that are close together are likely to be highly correlated. General features,
such as word frequencies in documents, may not exhibit this property of locality.

Locality makes it possible to impose a prior probability on the search space
of a feature selection algorithm. Locality implies that feature sets consisting of
one or a few clusters are more likely candidates than feature sets in which the
selected features are isolated. To reward locality, the energy minimization in (2)
is expanded to include an additional term:

P = arg min
γ,w

Esep(γ,w) + λEdim(w) + ηEloc(w) . (6)

The term Eloc(w) rewards selection of neighboring features, by requiring that
the non-zero elements of w be ordered in a structured manner.

Let J ⊂ {1 . . . n} be the set of features for which w is non-zero. To measure
how clustered the components of J are, we define an ’alphabet’ of structured
subsets of {1 . . . n} called windows, and measure the most compact description
needed to express J using this alphabet.

The neighborhood relationships between the features in the set {1 . . . n} de-
pend on the structure of the space from which the features are sampled. Typi-
cally, as in the case of parametric shape descriptions, the underlying structure
of a feature set is a lattice of one or two dimensions.

In order to define an alphabet of windows over the feature set, we use a
metric d(i, j) that assigns a non-negative distance to every pair of features i, j.
A set W ⊂ {1 . . . n} is defined to be a window of size q if (i) d(i, j) ≤ q for all
i, j ∈ W , and (ii), there does not exist a superset of W in {1 . . . n} for which the
condition (i) holds.

The distance function allows us to define windows on arbitrarily organized
features. For instance, when features are organized in a one-dimensional lattice,
and the distance function is d(i, j) = |i− j|, the windows are contiguous subsets
of features. By letting d(i, j) = |i − j| mod n, one can allow for wrap-around
windows, which are useful for periodic features, such as features sampled along
the boundary of a closed object. On higher-dimensional lattices, different dis-
tance functions such as Euclidean distance and Manhattan distance generate
differently shaped windows. For features sampled from vertices on a mesh, win-
dows can be constructed using the transitive distance function, which counts the
smallest number of edges on a mesh that separate a pair of vertices.



Let W = {W1 . . .WN} be a set of windows of various sizes over the feature
set {1. . . n}. The minimal window cover of a feature subset J is defined as the
smallest set α ⊂ {1 . . . N} for which

J ⊂
⋃
i∈α

Wi . (7)

We take the locality energy component Eloc(w) to be equal to the size of the
minimal window cover of the set of non-zero features in the vector w. While such
a formulation is combinatorial in nature, in the following sections we express it
in terms of linear programming and derive an elegant implementation.

2.3 Linear Programming Formulation

According to Bradley and Mangasarian [2], the feature selection problem (2) can
be formulated as the following smooth non-linear program:

minimize
γ,w,y,z,v

eT y
m + eT z

k + λeT I(v),

−Aw + eγ + e ≤ y
subject to Bw − eγ + e ≤ z

y ≥ 0, z ≥ 0 ,
−v ≤ w ≤ v .

(8)

This formulation does not directly minimize the objective function (2), but rather
it minimizes positive vectors y, z, and v, which constrain the components of the
objective function. Such a transformation of the minimization problem is fre-
quently used in support vector methodology in order to apply linear or quadratic
programming to energy minimization problems.

The vector v constraints w from above and below and thus eliminates the
need for using the absolute value of w in the objective function, as is done in
(3). The non-zero elements of v correspond to selected features.

In order to introduce the locality energy Eloc into the linear program, we
can express the non-zero elements of v as a union of a small number of windows,
and penalize the number of windows used. Let W1 . . .WN be an ’alphabet’ of
windows, as defined in Sec. 2.2. Let Ω be an n × N matrix whose elements
ωij are equal to 1 if the feature i belongs to the window Wj , and are equal to 0
otherwise. Let u be a sparse positive vector of length N whose non-zero elements
indicate a set of selected windows. Then the non-zero elements of Ωu indicate a
set of features that belong to the union of the windows selected by u.

In order to implement window selection as a smooth non-linear program, the
terms u and Ωu are used in place of v in the objective function. The resulting
formulation penalizes both the number of selected windows and the number of



features contained in those windows:

minimize
γ,w,y,z,u

eT y
m + eT z

k +
(
λeT Ω + ηeT

)
I(u),

−Aw + eγ + e ≤ y
subject to Bw − eγ + e ≤ z

y ≥ 0, z ≥ 0 ,
−Ωu ≤ w ≤ Ωu .

(9)

This formulation of the objective function is identical to the energy minimization
formulation (6) if none of the windows selected by u overlap. In case of an overlap,
the penalty assessed on the combined number of features in all of the selected
windows, and not on the total number of windows in the vector w.

We use a fast successive linear approximation algorithm outlined in [2] to
solve the program (9). The algorithm is randomly initialized and iteratively
solves a linear programming problem in which the concave term I(u) is approx-
imated using the Taylor series expansion. The algorithm does not guarantee a
global optimum but does converge to a minimum after several iterations. The
resulting vector u, whose non-zero elements indicate the selected windows, is
very sparse. The Sequential Object-Oriented Simplex Class Library (SoPlex), de-
veloped by Roland Wunderling [26], is used for solving the linear programming
problems.

The parameters λ and η affect the numbers of features and windows selected
by the window selection algorithm. Larger values of λ yield fewer features, and
similarly, larger values of η yield fewer windows. When both parameters are zero,
the algorithm performs no feature selection and in fact acts as a linear support
vector machine classifier. The number of features yielded in this case is bounded
only by the size of the training set.

3 Results on Simulated Data

Window selection and feature selection algorithms were compared using syn-
thetic Gaussian features that simulate the property of locality, which we claim
to be exhibited by shape features. Only a brief summary of the results is pre-
sented here; for a more detailed report and for results of synthetic experiments
on 2D shape data the reader should refer to [27].

In the first type of experiments, two-class training samples were generated
from pairs of 15-dimensional Gaussian distributions with equal covariances and
different means. The means differ in only 6 dimensions, which in one case are
arranged either into a single contiguous block of six features and in another case
into two blocks of three features. For each pair of distributions, training sam-
ples having sizes 30, 60, 90, and 120 were randomly generated. Window selection
(with windows defined as all possible contiguous ranges of features) and feature
selection were applied to the training samples. Classifiers were constructed on
the features selected by the two algorithms, as well as on the entire feature set.
The expected error rate of applying each classifier to new data sampled from



Fig. 1. Performance of window and feature selection on Gaussian data. Relevant fea-
tures are arranged into one block (left plot) and two blocks (right block). Plotted are
the expected error rates of the window selection algorithm (diamond, dotted line),
the feature selection algorithm (square, dashed line), and global discriminant analysis
(triangle, solid line) versus training sample size.

the distributions was computed empirically. Each experiment was repeated 40
times, and the mean expected error rate was reported. Figure 1 shows the results
of these experiments: classifiers based on window selection outperform the other
two classifiers, especially in the first case when the relevant features are arranged
into a single block.

4 Results on Clinical Hippocampus Data

The window and feature selection algorithms were applied to the study of the
shape of the hippocampus in schizophrenia using the data set that is identical
to the one reported in [6]. The data set consists of 117 subjects, 52 of whom are
schizophrenia patients, and the remaining 65 are matched healthy controls. The
left and right hippocampi of each subject are described using boundary meshes
that consist of 6,611 vertices and 13,218 triangular faces. These segmentations
were obtained using large-deformation diffeomorphic image matching described
in [15, 12, 5, 6].

Hippocampus is not a homogenous structure but rather consists of many
identifiable sub-regions, which may be affected differently by schizophrenia. In-
deed, [6] stipulates that ”the pattern of shape abnormality suggested a neu-
roanatomical deformity of the head of the hippocampus, which contains neurons
that project to the frontal cortex”. However, the statistical methodology em-
ployed in [6] is based on the eigenshape formulation that does not allow local
specificity of shape variation. The motivation for applying feature and window
selection to this data set is to find the regions of the hippocampus where the
shape differences associated with schizophrenia are most significant.

In order to use window and feature selection to produce regions large enough
to cover 10%-20% of the hippocampal surface, we reduced the number of features
from nearly 40, 000 that result from using the x, y, z coordinates of each mesh
vertex as features, to 160 summary features, which describe small patches on
the surface of the hippocampus. The reduction was necessary because window



selection and feature selection algorithms yield fewer features than there are
subjects in the training set and because of the prohibitive computational cost of
using so many features.

Patch features were computed as follows. We aligned the sets of 117 left and
117 right meshes using the Generalized Procrustes algorithm [11] restricted to
translation and orientation. In the process, we computed the mean left and right
hippocampal meshes. We subdivided each mesh into 80 patches of roughly equal
area using METIS graph partitioning software [17] on a graph whose vertices
correspond to the mesh triangles and are weighted by the average areas of the
triangles. The partitioned left and right mean meshes are shown in the top row
of Fig. 2.

We represented each patch with a single summary feature, which measures
the average inward or outward deformation of the patch with respect to the mean
mesh. The summary feature computed for the j-th patch in the i-th subject is
given by

fij =

∑
k∈P(j) (xik − x̄k)T Nk ∆Ak∑

k∈P(j) ∆Ak
, (10)

where P(j) is a set of indices of the vertices belonging to the j-th patch, x̄k

and Nk are the the position and approximate unit normal of the k-th vertex
in the mean shape, and ∆Ak is the area element, computed as one third of the
combined area of all triangles adjacent to the k-th vertex in the mean shape.

An alphabet of windows was defined over the patch summary features using
the transitive distance function, which counts the number of patch edges that
separate any two patches. Under this function, single patches form windows of
size 0 and sets of mutually adjacent patches form windows of size 1. For compu-
tational efficiency, windows of larger size were not included in the alphabet.

Feature selection and window selection algorithms were applied to patch
summary features in a series of leave-one-out cross-validation experiments. In
each leave-one-out iteration, one subject was removed from the data set, the
selection algorithm was applied to the remaining subjects, an L1 support vec-
tor classifier was constructed in the subspace spanned by the selected features,
the left out subject was assigned a class label by the classifier, and this class
label was compared to the true class label of the left out subject. The average
correct classification over 117 leave-one-out iterations was recoded. The feature
selection and window selection experiments were repeated for different values of
modulation parameters λ and η. Table 1 shows the results of these experiments.

In [6], using a 10-fold cross-validation methodology, a similar classification
rate of 68.4% is reported. The methods in [6] are based on eigenanalysis of the
entire set of 40, 000 features. The results in Table 1 show that with intelligent
feature selection a similar classification rate can be achieved with only 160 sum-
mary features. The feature selection methodology also specifies the local regions
of the hippocampus that are significant for discrimination.

The second row of Fig. 2 shows the ten patches that were selected most
frequently in the 117 leave-one-out experiments conducted with the feature se-
lection algorithm with λ = 0.16. The third row of Fig. 2 shows the ten most



Subdivision into patches

Patches selected most frequently by feature selection

Patches selected most frequently by window selection

Patch wise p-values

Fig. 2. Top row: mean left and mean right hippocampal meshes partitioned into 80
patches each. The meshes are shown from superior and anterior viewpoints. Second
row: ten patches that were selected most frequently during leave-one-out validation of
feature selection. Third row: ten windows that were selected most frequently during
leave-one-out validation of feature selection ( some of the windows overlap, and patches
that belong to more than one window are shaded darker on the cyan-red hue scale).
Bottom row: p-values of the mean difference tests computed at each patch; the neg-
ative logarithm of the p-values is displayed using the cyan-red hue scale (cyan = no
significance, red = high significance).



Table 1. Results of leave-one-out experiments with feature selection and window se-
lection on clinical data with patch summary features. Each column represents one set
of 117 experiments. Legend: λ, η are the modulation parameters from 6, R is the leave-
one-out correct classification rate, in percent, Nf is the average number of selected
features and Nw is the average number of selected windows.

Feature Sel. Window Sel.

λ 0.08 0.12 0.16 0.08 0.08 0.08 0.12 0.12 0.12 0.16 0.16 0.16
η 0.0 0.0 0.0 0.04 0.08 0.12 0.04 0.08 0.12 0.04 0.08 0.12
R(%) 65.0 65.0 68.4 69.2 64.1 62.4 62.4 64.1 57.3 54.7 59.0 61.4
Nf 16.4 7.5 4.6 19.3 13.5 9.88 8.50 6.1 4.7 4.0 2.9 2.8
Nw 8.5 5.7 3.9 4.2 2.8 2.1 2.1 1.6 1.4

frequently selected patch windows in the window selection experiment with
λ = 0.12 and η = 0.08. Window selection results in fewer isolated features than
feature selection. For reference, the bottom row of Fig. 2 plots the p-values of
mean difference hypothesis tests computed at each patch. No correction for the
repeated nature of tests has been applied. While the pattern of patches selected
by the window and feature selection algorithms closely resembles the pattern of
patches with low p-values, the selected patches do not correspond to the patches
with lowest p-values. As stipulated in [6], the head of the right hippocampus was
shown by window selection to be most relevant for discrimination.

5 Discussion and Conclusions

It is unlikely that a classification technique will one day make it possible to
accurately diagnose schizophrenia on the basis of hippocampal shape. Therefore,
our goal in developing the window selection algorithm was not so much to build
a better classifier but rather to find the regions of the hippocampus that are
significant for discrimination. With respect to this goal, the results presented
in this paper are encouraging. However, these results require further validation
using a different hippocampal data set. We plan to perform this validation in
the future.

We also plan to perform window and feature selection on hippocampal patches
selected manually on the basis of biological homogeneity and function. The use
of anatomically significant patches in the selection algorithms could open new
insights into schizophrenia.

On the theoretical front, we plan to extend this paper’s framework to select
features in a hierarchical manner. Selected patches would be further partitioned
into smaller patches, and the selection algorithms would be performed again on
the residuals, resulting in a high-resolution set of selected features. Hierarchical
feature selection would eliminate the information loss incurred by reduction to
patch summary features.

In conclusion, we have presented a framework for using feature selection in
shape characterization, developed a new window selection algorithm for handling



localized shape features, and applied feature and window selection to synthetic
and clinical data. The results on clinical data confirm an earlier finding from [6]
that the head of the hippocampus is significant in respect to schizophrenia and
suggest that the framework does provide useful locality and effective discrimi-
nation.
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